Name____ MATH 152H _____ Section____

Spring 2016

Sections 201-202

P. Yasskin

Multiple Choice: (13 problems, 4 points each)

FINAL EXAM

1-13	/52
14	/20
15	/20
16	/5
17	/5
18	/ 5
Total	/107

1.

Average Value of a Function

New Problem or Modify or Make Your Own Problem

Find the average value of the function $f(x) = 2/9*x^2$ on the interval [a,b] = [0,3].

- **a**. $\frac{1}{6}$
- **b**. $\frac{1}{3}$
- **c**. $\frac{2}{3}$
- **d**. $\frac{4}{3}$
- **e**. 2

2.

Integrals Which are Improper at an Endpoint

Problem Statement:

Determine if the following improper integral is convergent or divergent. $\int\limits_0^2 \frac{x}{(x-2)^3} \, \mathrm{d}x$ If convergent, compute it.

If divergent, determine if it is + infinity, - infinity, or neither.

- **a**. converges to $\frac{1}{4}$
- **b**. converges to $-\frac{1}{4}$
- **c**. diverges to $-\infty$
- **d**. diverges to ∞
- **e**. diverges but not to $\pm \infty$

Integration By Parts

Indefinite Integral

Definite Integral

Use integration by parts

to compute the integral:

 $\int J = \int_{1}^{2} \frac{ln(x)}{x^{2}} dx$

 $\frac{3-\ln(2)}{2}$

b.
$$\frac{\ln(2) - 3}{2}$$

c.
$$\frac{\ln(2)-1}{2}$$

d.
$$\frac{-\ln(2)}{2}$$

e.
$$\frac{1 - \ln(2)}{2}$$

4.

Trigonometric Integrals

Indefinite Integral Definite Integral

Use a substitution

 $J = \int_{0}^{\frac{1}{3}\pi} \sec^{4}\theta \, d\theta$ to compute the integral:

a.
$$-2\sqrt{3}$$

b.
$$2\sqrt{3}$$

c.
$$-\frac{27}{5}$$

d.
$$\frac{27}{5}$$

c.
$$-\frac{27}{5}$$

d. $\frac{27}{5}$
e. $\frac{81}{5}\sqrt{3}$



Simply identify the integral after the substitution.

a. $\int \frac{36\cos^3\theta \, d\theta}{\sin\theta}$

c. $\frac{1}{6} \int \cos \theta \, d\theta$ **d**. $\int \cos \theta \, d\theta$ **e**. $6 \int \cos \theta \, d\theta$

Partial Fractions: Finding Coefficients 6. New Function Include Completing the Square Goal: Find the coefficients in the partial fraction expansion: $\frac{3x^2 - 3x - 2}{x^3(x+2)} = \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x^3} + \frac{A_4}{x+2}$ **d.** $A_2 = 1$ $A_3 = 1$ **e.** $A_2 = 1$ $A_3 = -1$

Just find A_2 and A_3 .

a. $A_2 = -\frac{1}{2}$ $A_3 = -2$

b. $A_2 = \frac{1}{2}$ $A_3 = -2$

c. $A_2 = -1$ $A_3 = -1$

e. $A_2 = 1$ $A_3 = -1$

Volume By Slicing _ | X Quit New Problem or Modify or Make Your Own Problem Find the volume of the solid whose base is a semi-circle of radius 4 with the diameter edge parallel to the y axis, and whose cross sections perpendicular to the y direction are squares.

- **b**. $\frac{128}{3}$ **c**. $\frac{256}{3}$
- **d**. 8π
- **e**. $\frac{128}{3}\pi$

Direction Fields

New Differential Equation

Plot # 1

(a.)

8. Problem Statement: $\frac{\mathrm{d}}{\mathrm{d}x}y(x) = x - y$ Find the direction field of the differential equation: Select a Plot YOU!

O Plot # 3

(c.)

O Plot # 2

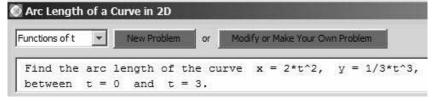
(b.)

_ | _ | ×

Quit

Plot # 4

(d.)

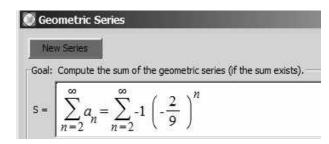


- **d**. $\frac{122}{3}$
- **e**. $\frac{125}{3}$

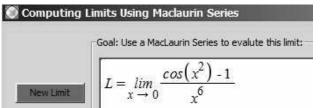
- **10**. The function $y = \frac{x}{x^2 + 1}$ is a solution to which differential equation?
 - $a. \quad \frac{dy}{dx} = \frac{y}{x^3 + x} + y^2$

 - **b.** $\frac{dy}{dx} = \frac{y}{x^3 + x} y^2$ **c.** $\frac{dy}{dx} = \frac{y^2}{x^3 + x} + y^2$
 - $\mathbf{d.} \quad \frac{dy}{dx} = \frac{y^2}{x^3 + x} y^2$
 - $e. \quad \frac{dy}{dx} = -\frac{y}{x^3 + x} + y^2$

11.



- **d**. $-\frac{4}{99}$
- e. diverges



a. 0

b.
$$\frac{1}{2}$$

c.
$$\frac{1}{3}$$

d.
$$\frac{1}{24}$$

e. diverges

13.

Separable Differential Equations New Differential Equation or Modify or Make Your Own Problem ← Find a General Solution ← Solve an Initial Value Problem y(1) = 2y = F(x) $\frac{dy}{dx} = -y^2 x^3$ Find the solution satisfying the initial condition

a.
$$y = -\frac{4}{x^4} + 6$$

b.
$$y = \frac{4}{x^4} - 2$$

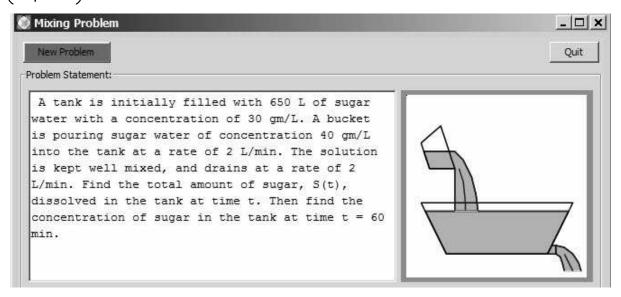
c.
$$y = \frac{4}{x^4 + 1}$$

c.
$$y = \frac{4}{x^4 + 1}$$

d. $y = \frac{4}{x^4 - 12}$

e.
$$y = \frac{4}{x^4} + \frac{3}{4}$$

14. (20 points)



- **a**. (8 pts) Write the differential equation and initial condition for S(t).
- **b**. (9 pts) Solve the initial value problem for S(t).

c. (3 pts) Find the concentration in the tank at t = 60 min.

15. (20 points)

Center And Radius of Convergence of a Power Series Goal: Find the center and radius of convergence of the series: $\sum_{n=1}^{\infty} \frac{n (x-8)^n}{4^n}$

Also find the interval of convergence by checking the endpoints.

a. (2 pts) Identify the center:

a = _____

b. (8 pts) Find the radius of convergence:

R =

c. (8 pts) Check the endpoints:

d. (2 pts) Summarize the interval of convergence:

I =

16. (5 points) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is absolutely convergent, convergent but not absolutely or divergent. Explain all tests you use.

17. (5 points) The series $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges by the Integral Test.

If it is approximated by its 100^{th} partial sum S_{100} , compute the integral bound on the error in this approximation.

18. (5 points) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}}$.