\qquad
MATH 152H
Sections 201/202 (circle one) Solutions P. Yasskin

Multiple Choice: (4 points each. No part credit.)

$1-13$	$/ 52$
14	$/ 20$
15	$/ 16$
16	$/ 18$
Total	$/ 106$

1. The series $S=\sum_{n=1}^{\infty}\left(3^{1 / n}-3^{1 /(n+1)}\right)$ is
a. absolutely convergent. correct choice
b. conditionally convergent.
c. divergent by the $n^{\text {th }}$ Term Divergence Test
d. divergent by the Alternating Series Test.
e. divergent because it is the difference between two p-series with $p=\frac{1}{n}<1$ and $p=\frac{1}{n+1}<1$.

Solution: The series is telescoping and
$S_{k}=\sum_{n=1}^{k}\left(3^{1 / n}-3^{1 /(n+1))}\right)=\left(3^{1}-3^{1 / 2}\right)+\left(3^{1 / 2}-3^{1 / 3}\right)+\cdots+\left(3^{1 / k}-3^{1 /(k+1)}\right)=3^{1}-3^{1 /(k+1)}$
So $S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(3^{1}-3^{1 /(k+1)}\right)=3^{1}-3^{0}=3-1=2$. So it is convergent.
The related absolute series is the same series since $3^{1 / n}-3^{1 /(n+1)}>0$.
2. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is
a. convergent and absolutely convergent.
b. absolutely convergent but not convergent.
c. convergent but not absolutely convergent. correct choice
d. divergent.

Solution: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is convergent because it is an alternating decreasing series and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. The related absolute series is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is divergent because it is a p-series with $p=\frac{1}{2}<1$. So $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is convergent but not absolutely convergent i.e. conditionally convergent.
3. If $f(x)=\sin \left(x^{2}\right)$, compute $f^{(6)}(0)$.
a. $-6 \cdot 6$!
b. $-6 \cdot 3$!
c. $6 \cdot 3$!
d. -5 ! correct choice
e. 5 !

Solution: $\sin t=t-\frac{1}{6} t^{3}+\frac{1}{5!} t^{5}+\cdots \quad \sin x^{2}=x^{2}-\frac{1}{6} x^{6}+\frac{1}{5!} x^{10}+\cdots$
The coefficient of x^{6} is $-\frac{1}{6}$. The coefficient of x^{6} in the general Maclaurin series is $\frac{f^{(6)}(0)}{6!}$.
Equating we have $\frac{f^{(6)}(0)}{6!}=-\frac{1}{6}$. So $f^{(6)}(0)=-\frac{6!}{6}=-5$!
4. Compute $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}$ HINT: Think about a known Maclaurin series.
a. $\frac{1}{e^{2}}$ correct choice
b. $\frac{-1}{e^{2}}$
c. $\frac{1}{2}$
d. $-e^{2}$
e. The series diverges.

Solution: $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x} \quad$ So $\quad \sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}=e^{-2}=\frac{1}{e^{2}}$
5. Compute $\lim _{x \rightarrow 0} \frac{\cos \left(x^{3}\right)-1+\frac{1}{2} x^{6}}{x^{12}}$
a. $-\frac{1}{24}$
b. $-\frac{1}{4}$
c. $\frac{1}{4}$
d. $\frac{1}{6}$
e. $\frac{1}{24}$ correct choice

Solution: $\lim _{x \rightarrow 0} \frac{\cos \left(x^{3}\right)-1+\frac{1}{2} x^{6}}{x^{12}}=\lim _{x \rightarrow 0} \frac{\left[1-\frac{\left(x^{3}\right)^{2}}{2}+\frac{\left(x^{3}\right)^{4}}{4!} \cdots\right]-1+\frac{1}{2} x^{6}}{x^{12}}$

$$
=\lim _{x \rightarrow 0}\left[\frac{\left(x^{3}\right)^{4}}{24 x^{12}}+\cdots\right]=\frac{1}{24}
$$

6. The series $S=\sum_{n=0}^{\infty} \frac{3^{n}}{1+4^{n}} \quad$ satisfies
a. $S=0$
b. $0<S<4$ correct choice
c. $S=4$
d. $S>4$
e. The series diverges.

Solution: $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}$ is geometric. $a=1$ and $r=\frac{3}{4}$.
Since $|r|<1, \quad \sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}=\frac{1}{1-\frac{3}{4}}=4 \quad$ So $\quad \sum_{n=0}^{\infty} \frac{3^{n}}{1+4^{n}}<\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}=4$
Also $\sum_{n=0}^{\infty} \frac{3^{n}}{1+4^{n}}>0$ because all terms are positive.
7. Find the equation of the sphere whose diameter has endpoints at $(2,1,6)$ and $(4,-3,8)$.
a. $(x+6)^{2}+(y-2)^{2}+(z+14)^{2}=6$
b. $(x+3)^{2}+(y-1)^{2}+(z+7)^{2}=24$
c. $(x-3)^{2}+(y+1)^{2}+(z-7)^{2}=6 \quad$ correct choice
d. $(x-3)^{2}+(y+1)^{2}+(z-7)^{2}=24$
e. $(x-6)^{2}+(y+2)^{2}+(z-14)^{2}=24$

Solution: The midpoint is $\frac{1}{2}(2+4,1-3,6+8)=(3,-1,7)$.
The radius is the distance from $(2,1,6)$ to $(3,-1,7)$:
$r=d((2,1,6),(3,-1,7))=\sqrt{(3-2)^{2}+(-1-1)^{2}+(7-6)^{2}}=\sqrt{1+4+1}=\sqrt{6}$
The circle is $(x-3)^{2}+(y+1)^{2}+(z-7)^{2}=6$.
8. A triangle has vertices $A=(1,2,3), \quad B=(2,3,3)$ and $C=(1,3,2)$. Find the angle at A.
a. 0°
b. 30°
c. 45°
d. 60° correct choice
e. 90°

Solution: $\overrightarrow{A B}=B-A=(2,3,3)-(1,2,3)=(1,1,0) \quad \overrightarrow{A C}=C-A=(1,3,2)-(1,2,3)=(0,1,-1)$
$\overrightarrow{A B} \cdot \overrightarrow{A C}=0+1+0=1 \quad|\overrightarrow{A B}|=\sqrt{1+1+0}=\sqrt{2} \quad|\overrightarrow{A C}|=\sqrt{0+1+1}=\sqrt{2}$
$\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2} \quad \theta=60^{\circ}$
9. The $3^{\text {rd }}$ degree Taylor polynomial for $f(x)=\frac{1}{\sqrt{x}}$ at $x=4$ is

$$
\begin{aligned}
T_{3}(x)= & f(4)+f^{\prime}(4)(x-4)+\frac{1}{2} f^{\prime \prime}(4)(x-4)^{2}+\frac{1}{6} f^{\prime \prime \prime}(4)(x-4)^{3} \\
& =\frac{1}{2}-\frac{1}{16}(x-4)+\frac{3}{256}(x-4)^{2}-\frac{5}{2048}(x-4)^{3}
\end{aligned}
$$

and the third derivative is $f^{\prime \prime \prime}(x)=\frac{-15}{8} x^{-7 / 2}$.
If the $2^{\text {nd }}$ degree Taylor polynomial $T_{2}(x)$ is used to approximate $f(6)=\frac{1}{\sqrt{6}}$ we get
$T_{2}(6)=\frac{1}{2}-\frac{1}{16}(6-4)+\frac{3}{256}(6-4)^{2}=\frac{27}{64}=.4219$
Which of the following is the best bound on the error in this approximation?
a. $\left|E_{2}\right|<\frac{5}{128} \approx .0391$
b. $\left|E_{2}\right|<\frac{5}{256} \approx .0195$ correct choice
c. $\left|E_{2}\right|<\frac{15}{128} \approx .1172$
d. $\left|E_{2}\right|<\frac{15}{256} \approx .0586$
e. $\left|E_{2}\right|<\frac{15}{512} \approx .0293$

Solution Method 1: This is the beginning of an alternating series.
So the error in the approximation is less than the absolute value of the next term.
$\left|E_{2}\right|<\left|a_{3}\right|=\left|\frac{5}{2048}(6-4)^{3}\right|=\frac{5}{256} \approx .0195$.
Solution Methiod 2: The Taylor Remainder Theorem says:
If you use $T_{2}(x)$, to approximate the function, $f(x)$, then the remainder, $E_{2}(x)=f(x)-T_{2}(x)$, is bounded by $\left|E_{2}(x)\right| \leq \frac{M(x-a)^{3}}{3!}$ where a is the center and $M \geq\left|f^{(3)}(c)\right|$ for all c between a and x.
With $x=6$, this says:
$E_{2}(6)$ is bounded by $\left|E_{2}(6)\right| \leq \frac{M(6-4)^{3}}{3!}$ where $M \geq\left|f^{(3)}(c)\right|$ for all c between 4 and 6. The maximum of $\left|f^{(3)}(x)\right|=\frac{15}{8} x^{-7 / 2}$ on $[4,6]$ occurs at $x=4$. So we take $M=\frac{15}{8 \sqrt{4}^{7}}=\frac{15}{1024}$.
Then $\left|R_{2}(x)\right| \leq \frac{15}{1024} \frac{(6-4)^{3}}{(3)!}=\frac{5}{256} \approx .0195$.
Both methods give the same answer.
10. Suppose the function $y=f(x)$ is the solution of $\frac{d y}{d x}=x^{2}-y^{2}$ satisfying the initial condition $f(1)=2$. Find $f^{\prime}(1)$.
a. -1
b. -2
c. -3 correct choice
d. 1
e. 2

Solution: As a solution, $y=f(x)$ satisfies $\frac{d f}{d x}=x^{2}-f(x)^{2}$. So $f^{\prime}(1)=1^{2}-f(1)^{2}=1-2^{2}=-3$.
11. Find the solution, $y=f(x)$, of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ satisfying the initial condition $f(0)=3$. What is $f(3)$?
a. $3 \sqrt{2}$
b. $3 \sqrt[3]{2}$ correct choice
c. $\sqrt[3]{36}$
d. 6
e. 18

Solution: We separate: $y^{2} d y=x^{2} d x$ and integrate: $\frac{y^{3}}{3}=\frac{x^{3}}{3}+C$.
From the initial condition, when $x=0, y=3$. So $\frac{27}{3}=\frac{0^{3}}{3}+C$. So $C=9$.
Then $y^{3}=x^{3}+3 C=x^{3}+27$ and $y=\left(x^{3}+27\right)^{1 / 3}=f(x)$. So $f(3)=54^{1 / 3}=3 \sqrt[3]{2}$.
12. Find the integrating factor for the linear differential equation $x^{4} \frac{d y}{d x}=4 x^{3} y+x^{2}$.
a. x^{4}
b. $4 \ln x$
c. $-4 \ln x$
d. $e^{-4 / x}$
e. x^{-4} correct choice

Solution: In standard form the equation is $\frac{d y}{d x}-\frac{4}{x} y=\frac{1}{x^{2}}$.
So $P=-\frac{4}{x}, \quad \int P d x=-\int \frac{4}{x} d x=-4 \ln x \quad$ and $\quad I=e^{\int P d x}=e^{-4 \ln x}=x^{-4}$
13. Which of the following is the direction field of the differential equation $\frac{d y}{d x}=x^{2} y$?
a.

b.

c.

d.

correct choice

Solution: The slope, $x^{2} y$, must be positive in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants and negative in the $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants.
14. (20 points) For each series, determine if it is convergent or divergent.

Be sure to identify the Convergence Test(s) and check out their hypotheses.
a. $(6 \mathrm{pts}) \quad \sum_{n=2}^{\infty} n e^{\left(-n^{2}\right)}$

Solution: Use Integral Test:
Consider $f(x)=x e^{\left(-x^{2}\right)}$
Note: The terms are positive, f interpolates: $f(n)=n e\left(-n^{2}\right)$ and
f is decreasing because $f^{\prime}(x)=e^{\left(-x^{2}\right)}-x e^{\left(-x^{2}\right)} 2 x=e^{\left(-x^{2}\right)}\left(1-2 x^{2}\right)<0$ for $x \geq 2$.
We integrate using the substitution $u=-x^{2} \quad d u=-2 x d x$
$\int_{2}^{\infty} x e^{\left(-x^{2}\right)} d x=-\frac{1}{2} \int e^{u} d u=-\left.\frac{1}{2} e^{\left(-x^{2}\right)}\right|_{2} ^{\infty}=\frac{1}{2} e^{-4}$ which converges
So $\sum_{n=2}^{\infty} n e^{\left(-n^{2}\right)}$ converges.
b. (6 pts) $\sum_{n=2}^{\infty} \frac{n^{5}-3}{n^{6}+1}$

Solution: Compare to $\sum_{n=2}^{\infty} \frac{1}{n}$ which is a divergent harmonic series (p-series with $p=1$).
Note: The Simple Comparison Test will not work because $\frac{n^{5}-3}{n^{6}+1}<\frac{n^{5}}{n^{6}}=\frac{1}{n}$
Use Limit Comparison Test:
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{5}-3}{n^{6}+1} \cdot \frac{n}{1}=1$ which is finite and non-zero.
So $\sum_{n=2}^{\infty} \frac{n^{5}-3}{n^{6}+1}$ diverges also.
c. $(8 \mathrm{pts}) \sum_{n=2}^{\infty} \frac{\sin n}{n^{2}+1}$

Solution: The series is not positive and is not alternating. So we cannot use a test for positive series nor the alternating series test.

Use Related Absolute Series Test:

The related absolute series is $\sum_{n=2}^{\infty} \frac{|\sin n|}{n^{2}+1}$ which is $<\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ which is a p-series with $p=2$ and so $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ is convergent. Consequently, $\sum_{n=2}^{\infty} \frac{|\sin n|}{n^{2}+1}$ is convergent by the comparison test. Consequently, $\sum_{n=2}^{\infty} \frac{\sin n}{n^{2}+1}$ converges because its related absolute series converges.
15. (16 points) Find the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(x-4)^{n}$. Be sure to identify the Convergence Test(s) and check out their hypotheses.

Solution: Use Ratio Test: $\quad\left|a_{n}\right|=\frac{|x-4|^{n}}{n 3^{n}} \quad\left|a_{n+1}\right|=\frac{|x-4|^{n+1}}{(n+1) 3^{n+1}}$
$\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-4|^{n+1}}{(n+1) 3^{n+1}} \frac{n 3^{n}}{|x-4|^{n}}=\frac{|x-4|}{3} \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)=\frac{|x-4|}{3}$
The series is absolutely convergent when $\rho=\frac{|x-4|}{3}<1$ or $|x-4|<3$.
So the radius of convergence is $R=3$ and the series is absolutely convergent on $(1,7)$.
We check the endpoints:
$x=1$: $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(1-4)^{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ which is a divergent harmonic series.
$x=7$: $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(7-4)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which is convergent by the Alternating Series Test.
So the interval of convergence is $1<x \leq 7$ or $(1,7]$.
16. (18 points) A salt water fish tank contains 20 liters of water with 700 grams of salt. In order to reduce the salt concentration, you pour in salt water with a concentration of 15 grams of salt per liter at 2 liters per minute. You keep the tank well mixed and drain the mixture at 2 liters per minute. Let $S(t)$ be the amount of salt (in grams) in the tank at time t (in minutes).
a. (6 pts) Write the differential equation and initial condition for $S(t)$.

Solution: $\frac{d S}{d t} \frac{\mathrm{~g}}{\min }=15 \frac{\mathrm{~g}}{\mathrm{~L}} \cdot 2 \frac{\mathrm{~L}}{\min }-\frac{S \mathrm{~g}}{20 \mathrm{~L}} \cdot 2 \frac{\mathrm{~L}}{\min }$ or $\frac{d S}{d t}=30-\frac{1}{10} S$ $S(0)=700$
b. (9 pts) Solve the initial value problem for $S(t)$.

Solution Method 1: The equation is separable. Separate and integrate.
$\int \frac{d S}{30-\frac{1}{10} S}=\int d t \quad-10 \ln \left|30-\frac{1}{10} S\right|=t+C$
Solve: $\quad \ln \left|30-\frac{1}{10} S\right|=-\frac{t}{10}-\frac{C}{10} \quad\left|30-\frac{1}{10} S\right|=e^{-C / 10} e^{-t / 10}$
$30-\frac{1}{10} S=A e^{-t / 10} \quad$ where $\quad A= \pm e^{-C / 10} \quad S=300-10 A e^{-t / 10}$
Use the initial condition: At $t=0$, we have $S=700$. So
$700=300-10 A \quad A=-40$
Substitute back: $\quad S=300+400 e^{-t / 10}$
Solution Method 2: The equation is linear: Put it in standard form: $\frac{d S}{d t}+\frac{1}{10} S=30$
Find the integrating factor: $\quad I=\exp \left(\int \frac{1}{10} d t\right)=e^{t / 10}$
Multiply the standard equation by $I: \quad e^{t / 10} \frac{d S}{d t}+\frac{1}{10} e^{t / 10} S=30 e^{t / 10}$
Recognize the left side as the derivative of a product: $\quad \frac{d}{d t}\left(e^{t / 10} S\right)=30 e^{t / 10}$
Integrate and solve: $\quad e^{t / 10} S=\int 30 e^{t / 10} d t=300 e^{t / 10}+C \quad S=300+C e^{-t / 10}$
Use the initial condition: At $t=0$, we have $S=700$. So
$700=300+C \quad C=400$
Substitute back: $\quad S=300+400 e^{-t / 10}$
c. $(3 \mathrm{pts})$ After how many minutes will the amount of salt in the tank drop to 400 grams?

Solution: Set $S=400$ and solve for t :
$400=300+400 e^{-t / 10} \quad 400 e^{-t / 10}=100 \quad e^{-t / 10}=\frac{1}{4} \quad \frac{-t}{10}=\ln \left(\frac{1}{4}\right)$
$t=-10 \ln \left(\frac{1}{4}\right)=10 \ln 4$

