$1-8$	$/ 40$
9	$/ 15$
10	$/ 15$
11	$/ 15$
12	$/ 15$
Total	$/ 100$

1. Find the area between, $y=x^{4}$ and $y=8 x$.
a. 20
b. 12
c. $\frac{112}{5}$
d. $\frac{56}{5}$
e. $\frac{48}{5}$
2. Find the area between the cubic $y=x^{3}+x^{2}$ and the line $y=2 x$.
a. $-\frac{27}{12}$
b. $\frac{27}{12}$
c. $\frac{37}{12}$
d. $\frac{47}{12}$
e. $\frac{57}{12}$
3. Compute $\int_{1}^{e} x^{3} \ln x d x$
a. $\frac{1}{16}$
b. $\frac{1}{4}$
c. $\frac{3 e^{4}}{16}$
d. $\frac{3 e^{4}+1}{16}$
e. $\frac{3 e^{4}+1}{4}$
4. Compute $\int_{0}^{\pi / 6} \sin (2 \theta) \cos ^{2}(\theta) d \theta$
a. $\frac{-9}{32}$
b. $\frac{-1}{32}$
c. $\frac{7}{32}$
d. $\frac{9}{32}$
e. $\frac{15}{32}$
5. Find the mass of a 2 meter bar whose density is $\delta(x)=4 x-x^{3}$ where x is measured (in meters) from one end.
a. 2
b. 4
c. 8
d. 16
e. 32
6. Find the center of mass of a 2 meter bar whose density is $\delta(x)=4 x-x^{3}$ where x is measured (in meters) from one end.
a. $\frac{15}{16}$
b. $\frac{15}{64}$
c. $\frac{64}{15}$
d. $\frac{32}{15}$
e. $\frac{16}{15}$
7. Find the average density of a 2 meter bar whose density is $\delta(x)=4 x-x^{3}$ where x is measured (in meters) from one end.
a. 2
b. 4
c. 8
d. 16
e. 32
8. Compute $\int_{0}^{\pi / 4} \sec ^{4} \theta \tan ^{2} \theta d \theta$
a. $-\frac{8}{15}$
b. $-\frac{2}{15}$
c. $\frac{2}{15}$
d. $\frac{8}{15}$
e. $\frac{128}{15}$

Work Out: (Points indicated. Part credit possible. Show all work.)
9. (15 points) Find the point $\left(a, e^{2 a}\right)$ on the graph of the curve $y=e^{2 x}$ where the tangent line passes through the point $(b, 0)$ where b is a fixed but unspecified number.
HINT: In your answer, express a and the point in terms of b.
10. (15 points) Derive a reduction formula which gives

$$
\int(\ln x)^{n} d x \text { in terms of } \int(\ln x)^{n-1} d x \text { and } \int(\ln x)^{n-2} d x .
$$

HINT: You need to know $\int \ln x d x$.
11. (15 points) Compute $\int_{1}^{4} \cos (\sqrt{x}) d x$.
a. First, compute $\int \cos (\sqrt{x}) d x$.
b. Check your answer by differentiating.
c. Compute $\int_{1}^{4} \cos (\sqrt{x}) d x$.
12. (15 points) Compute $\int_{13}^{15} \frac{\sqrt{x^{2}-144}}{x} d x$.
a. First, compute $\int \frac{\sqrt{x^{2}-144}}{x} d x$. Be sure to explain why you picked the substitution you use.
b. Check your answer by differentiating.
c. Compute $\int_{13}^{15} \frac{\sqrt{x^{2}-144}}{x} d x$. Simplify. No decimals!

