Name			1-8	/40
MATH 152H	Exam 1	Spring 2017	9	/15
Sections 203/204 (circle one)		P. Yasskin	10	/15
Multiple Choice: (5 points each. No part credit.)			11	/15
			12	/15
			Total	/100

- **1**. Find the area between, $y = x^4$ and y = 8x.
 - **a**. 20
 - **b**. 12

 - c. $\frac{112}{5}$ d. $\frac{56}{5}$ e. $\frac{48}{5}$

- **2**. Find the area between the cubic $y = x^3 + x^2$ and the line y = 2x.
 - **a**. $-\frac{27}{12}$
 - **b**. $\frac{27}{12}$ **c**. $\frac{37}{12}$ **d**. $\frac{47}{12}$

 - **e**. $\frac{57}{12}$

3. Compute $\int_{1}^{e} x^3 \ln x \, dx$

- **5**. Find the mass of a 2 meter bar whose density is $\delta(x) = 4x x^3$ where x is measured (in meters) from one end.
 - **a**. 2
 - **b**. 4
 - **c**. 8
 - **d**. 16
 - **e**. 32
- **6**. Find the center of mass of a 2 meter bar whose density is $\delta(x) = 4x x^3$ where x is measured (in meters) from one end.
 - **a.** $\frac{15}{16}$ **b.** $\frac{15}{64}$ **c.** $\frac{64}{15}$ **d.** $\frac{32}{15}$ **e.** $\frac{16}{15}$

- 7. Find the average density of a 2 meter bar whose density is $\delta(x) = 4x x^3$ where x is measured (in meters) from one end.
 - **a**. 2
 - **b**. 4
 - **c**. 8
 - **d**. 16
 - **e**. 32

Work Out: (Points indicated. Part credit possible. Show all work.)

9. (15 points) Find the point (a, e^{2a}) on the graph of the curve $y = e^{2x}$ where the tangent line passes through the point (b, 0) where *b* is a fixed but unspecified number. HINT: In your answer, express *a* and the point in terms of *b*. **10**. (15 points) Derive a reduction formula which gives $\int (\ln x)^n dx \text{ in terms of } \int (\ln x)^{n-1} dx \text{ and } \int (\ln x)^{n-2} dx.$ HINT: You need to know $\int \ln x dx.$

11. (15 points) Compute $\int_{1}^{4} \cos(\sqrt{x}) dx$.

a. First, compute $\int \cos(\sqrt{x}) dx$.

b. Check your answer by differentiating.

- **12.** (15 points) Compute $\int_{13}^{15} \frac{\sqrt{x^2 144}}{x} dx$.
 - **a**. First, compute $\int \frac{\sqrt{x^2 144}}{x} dx$. Be sure to explain why you picked the substitution you use.

b. Check your answer by differentiating.

c. Compute
$$\int_{13}^{15} \frac{\sqrt{x^2 - 144}}{x} dx$$
. Simplify. No decimals!