Name			1-8	/40	10	/20
MATH 152H	Exam 2	Spring 2017	9	/15	11	/25
Sections 203/204 (circle one)		P. Yasskin			Total	/100

Multiple Choice: (5 points each. No part credit.)

1. Find the arc length of the curve
$$(x,y) = \left(\frac{1}{2}t^6, t^4\right)$$
 from $(0,0)$ to $\left(\frac{1}{2}, 1\right)$.

a. $\frac{10}{9}$ **b**. $\frac{5}{9}$ **c**. $\frac{61}{54}$ **d**. $\frac{1}{54}$ **e**. $\frac{1}{6}$

- **2**. The parabola $y = x^2$ for $0 \le x \le \sqrt{2}$ is revolved about the *y*-axis. Find the surface area swept out.
 - **a**. $\frac{13\pi}{3}$

 - **b**. $\frac{13\pi}{6}$
 - **c**. $\frac{13\pi}{9}$
 - **d**. $\frac{26\pi}{3}$
 - **e**. $\frac{26\pi}{9}$

3. Find the general partial fraction expansion of $f(x) = \frac{x-1}{(x^3+x)(x^4-1)}$.

a.
$$\frac{A}{x} + \frac{Bx+C}{x^2-1} + \frac{Dx+E}{x^2+1} + \frac{Fx+G}{(x^2+1)^2}$$

b. $\frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1} + \frac{Dx+E}{(x^2+1)^2}$
c. $\frac{A}{x} + \frac{B}{x+1} + \frac{Cx+D}{(x^2+1)^2}$
d. $\frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1} + \frac{Dx+E}{x^2+1} + \frac{Fx+G}{(x^2+1)^2}$
e. $\frac{A}{x} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$

- **4**. In the partial fraction expansion $\frac{36x}{x^4 81} = \frac{Ax + B}{x^2 + 9} + \frac{C}{x + 3} + \frac{D}{x 3}$, which coefficient is INCORRECT?
 - **a**. A = -2
 - **b**. B = 6
 - **c**. *C* = 1
 - **d**. D = 1
 - e. All of the above are correct.

- 5. The base of a solid is the region between the parabola $y = x^2$ and the line y = 4 and the crosssections perpendicular to the *y*-axis are squares. Find its volume
 - **a**. 4
 - **b**. 8
 - **c**. 16
 - **d**. 32
 - **e**. 64

- **6**. The region bounded by the curves $y = x^4$, y = 0 and x = 3 is revolved about the *y*-axis. Find the volume swept out.
 - **a**. $3^{7}\pi$
 - **b**. $3^{5}\pi$
 - **c**. $3^{3}\pi$
 - **d**. $\frac{3^5}{5}\pi$ **e**. $\frac{486}{5}\pi$

- 7. The region bounded by the curves $y = x^4$, y = 0 and x = 3 is revolved about the *x*-axis. Find the volume swept out.
 - **a**. $3^{7}\pi$
 - **b**. $3^{5}\pi$
 - **c**. $3^{3}\pi$
 - **d**. $\frac{3^5}{5}\pi$ **e**. $\frac{486}{5}\pi$

- 8. Compute $\int_0^3 \frac{1}{(25-x^2)^{3/2}} dx$.
 - **a.** $\frac{3}{4}$ **b.** $\frac{3}{16}$ **c.** $\frac{3}{25}$ **d.** $\frac{3}{100}$
 - **e**. $\frac{3}{400}$

Work Out: (Points indicated. Part credit possible. Show all work.)

9. (15 points) A water trough is 10 feet long and its end is an isosceles triangle with vertex down with height 4 feet and width 2 feet. The trough is filled with water to a depth of 3 feet. Find the work done to pump the water out of the trough to a height of 1 foot above the top of the trough. Assume the weight density of the water is $\rho = 64 \frac{lb}{ft^3}$

10. (20 points) The region between the curves $x = 4 + \sqrt{y}$ and $x = 5 + \sqrt{y}$ for $0 \le y \le 4$ (shown below), is rotated about the *y*-axis to form the clay bowl (also shown below). (Ignore the fact that there is no base.) In the rotated figure, *y* is the vertical axis, the inner radius is $r_1 = 4 + \sqrt{y}$ and the outer radius is $r_2 = 5 + \sqrt{y}$.

Here y is measured in cm and the density of the clay used to make the bowl is $\delta = \frac{3}{2} \frac{gm}{cm^3}$.

a. Find the volume of clay used to make the bowl.

- b. Find the mass of the clay used to make the bowl.
- **c**. Find the *y*-component of the center of mass of the bowl.

11. (25 points) Given the partial fraction expansion compute $\int \frac{54x + 54}{x^4 - 81} dx$. a. $\int \frac{2}{x - 3} dx =$

$$\frac{54x+54}{x^4-81} = \frac{2}{x-3} + \frac{1}{x+3} - \frac{3x+3}{x^2+9},$$

b.
$$\int \frac{1}{x+3} \, dx =$$

$$\mathbf{c.} \quad \int \frac{-3x}{x^2 + 9} \, dx =$$

$$\mathbf{d.} \quad \int \frac{-3}{x^2 + 9} \, dx =$$

$$e. \quad \int \frac{54x + 54}{x^4 - 81} \, dx =$$