Name \qquad
MATH 152H
Exam 2 Spring 2017
Sections 203/204 (circle one) P. Yasskin

$1-8$	$/ 40$	10	$/ 20$
9	$/ 15$	11	$/ 25$
		Total	$/ 100$

Multiple Choice: (5 points each. No part credit.)

1. Find the arc length of the curve $(x, y)=\left(\frac{1}{2} t^{6}, t^{4}\right)$ from $(0,0)$ to $\left(\frac{1}{2}, 1\right)$.
a. $\frac{10}{9}$
b. $\frac{5}{9}$
c. $\frac{61}{54}$
d. $\frac{1}{54}$
e. $\frac{1}{6}$
2. The parabola $y=x^{2}$ for $0 \leq x \leq \sqrt{2}$ is revolved about the y-axis. Find the surface area swept out.
a. $\frac{13 \pi}{3}$
b. $\frac{13 \pi}{6}$
c. $\frac{13 \pi}{9}$
d. $\frac{26 \pi}{3}$
e. $\frac{26 \pi}{9}$
3. Find the general partial fraction expansion of $f(x)=\frac{x-1}{\left(x^{3}+x\right)\left(x^{4}-1\right)}$.
a. $\frac{A}{x}+\frac{B x+C}{x^{2}-1}+\frac{D x+E}{x^{2}+1}+\frac{F x+G}{\left(x^{2}+1\right)^{2}}$
b. $\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x-1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}}$
c. $\frac{A}{x}+\frac{B}{x+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}$
d. $\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x-1}+\frac{D x+E}{x^{2}+1}+\frac{F x+G}{\left(x^{2}+1\right)^{2}}$
e. $\frac{A}{x}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}$
4. In the partial fraction expansion $\frac{36 x}{x^{4}-81}=\frac{A x+B}{x^{2}+9}+\frac{C}{x+3}+\frac{D}{x-3}$, which coefficient is INCORRECT?
a. $A=-2$
b. $B=6$
c. $C=1$
d. $D=1$
e. All of the above are correct.
5. The base of a solid is the region between the parabola $y=x^{2}$ and the line $y=4$ and the crosssections perpendicular to the y-axis are squares. Find its volume
a. 4
b. 8
c. 16
d. 32
e. 64
6. The region bounded by the curves $y=x^{4}, y=0$ and $x=3$ is revolved about the y-axis. Find the volume swept out.
a. $3^{7} \pi$
b. $3^{5} \pi$
c. $3^{3} \pi$
d. $\frac{3^{5}}{5} \pi$
e. $\frac{486}{5} \pi$
7. The region bounded by the curves $y=x^{4}, y=0$ and $x=3$ is revolved about the x-axis. Find the volume swept out.
a. $3^{7} \pi$
b. $3^{5} \pi$
c. $3^{3} \pi$
d. $\frac{3^{5}}{5} \pi$
e. $\frac{486}{5} \pi$
8. Compute $\int_{0}^{3} \frac{1}{\left(25-x^{2}\right)^{3 / 2}} d x$.
a. $\frac{3}{4}$
b. $\frac{3}{16}$
c. $\frac{3}{25}$
d. $\frac{3}{100}$
e. $\frac{3}{400}$

Work Out: (Points indicated. Part credit possible. Show all work.)
9. (15 points) A water trough is 10 feet long and its end is an isosceles triangle with vertex down with height 4 feet and width 2 feet. The trough is filled with water to a depth of 3 feet.
Find the work done to pump the water out of the trough to a height of 1 foot above the top of the trough. Assume the weight density of the water is $\rho=64 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
10. (20 points) The region between the curves $x=4+\sqrt{y}$ and $x=5+\sqrt{y}$ for $0 \leq y \leq 4$ (shown below), is rotated about the y-axis to form the clay bowl (also shown below). (Ignore the fact that there is no base.) In the rotated figure, y is the vertical axis, the inner radius is $r_{1}=4+\sqrt{y}$ and the outer radius is $r_{2}=5+\sqrt{y}$.
Here y is measured in cm and the density of the clay used to make the bowl is $\delta=\frac{3}{2} \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$.

a. Find the volume of clay used to make the bowl.
b. Find the mass of the clay used to make the bowl.
c. Find the y-component of the center of mass of the bowl.
11. (25 points) Given the partial fraction expansion $\frac{54 x+54}{x^{4}-81}=\frac{2}{x-3}+\frac{1}{x+3}-\frac{3 x+3}{x^{2}+9}$, compute $\int \frac{54 x+54}{x^{4}-81} d x$.
a. $\int \frac{2}{x-3} d x=$
b. $\int \frac{1}{x+3} d x=$
c. $\int \frac{-3 x}{x^{2}+9} d x=$
d. $\int \frac{-3}{x^{2}+9} d x=$
e. $\int \frac{54 x+54}{x^{4}-81} d x=$

