Name			1-12	/60	14	/20
MATH 152H	Exam 3	Spring 2017	13	/7	15	/18
Sections 203/204 (circle one)		P. Yasskin			Total	/105

Multiple Choice: (5 points each. No part credit.)

- **1**. If it takes 12 Newtons of force to hold a spring at 3 meters from the rest position, how much work is done to stretch it from 2 meters to 4 meters from rest?
 - a. 24 Joules
 - **b**. 16 Joules
 - c. 8 Joules
 - d. 6 Joules
 - e. 4 Joules

2. Compute $\int_0^{\pi/2} \tan\theta \, d\theta$.

a. –∞

- $\mathbf{b}. -1$
- **c**. 0
- **d**. 1
- **e**. ∞

3. Compute $\int_{4}^{\infty} \frac{1}{x^{3/2}} dx$. a. -1 b. 0 c. $\frac{1}{3}$ d. 1 e. ∞

- 4. Compute $\int_{-8}^{8} \frac{1}{x^{5/3}} dx$.
 - **a**. –∞
 - **b**. ∞
 - c. divergent but not $\pm \infty$
 - **d**. 0
 - **e**. $\frac{3}{4}$

- **5**. The differential equation $\frac{dy}{dx} = 2 + 2y + x + xy$ is
 - a. both separable and linear
 - b. separable but not linear
 - c. linear but not separable
 - d. neither separable nor linear
- **6**. Find the integrating factor for the differential equation $x^3 \frac{dy}{dx} = x^5 + 3x^2y$.
 - **a**. $I = x^3$
 - **b**. $I = \frac{1}{x^3}$
 - **c**. $I = e^{3/x^2}$
 - **d**. $I = e^{-3/x^2}$
 - **e**. $I = e^{-x^3}$

7. Solve the initial value problem $\frac{dy}{dx} = \frac{4}{3} \frac{x^3}{y^2}$ with y(1) = 2. What is y(0)?

- **a**. ³√2
- **b**. ³√7
- **c**. $-\sqrt[3]{15}$
- **d**. 7
- **e**. -15
- 8. Compute $\lim_{n\to\infty} \left(\frac{1}{n^4}\right)^{3/\ln n}$.
 - **a**. 12
 - **b**. 64
 - **c**. $e^{3/4}$
 - **d**. *e*¹²
 - **e**. e^{-12}

9. Compute
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n}$$

a. -1

- **b**. -3
- **c**. 1
- **d**. 2
- **e**. 3

- **10.** The series $\sum_{n=3}^{\infty} \frac{2n}{(n^2-4)^2}$
 - **a**. diverges by the n^{th} Term Divergence Test
 - **b**. converges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^3}$
 - **c**. diverges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^3}$
 - d. converges by the Integral Test
 - e. diverges by the Integral Test

11. If
$$S = \sum_{n=3}^{\infty} \frac{2n}{(n^2 - 4)^2}$$
 is approximated by its 12th-partial sum $S_{12} = \sum_{n=3}^{12} \frac{2n}{(n^2 - 4)^2}$, then the error $E_{12} = S - S_{12}$ is less than

a.
$$\ln 140$$

b. $\frac{1}{2} \ln 140$
c. $\left(\frac{1}{140}\right)^{3}$
d. $\left(\frac{1}{140}\right)^{2}$
e. $\frac{1}{140}$

12. Compute $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$. Note: $\frac{1}{n(n-1)} = \frac{n}{n-1} - \frac{n+1}{n}$ **a.** $\frac{1}{3}$ **b.** $\frac{1}{2}$ **c.** 1 **d.** 2 **e.** 3

Work Out: (Points indicated. Part credit possible. Show all work.)

- **13**. (7 points) A tank initially contains 25 L of salt water with a concentration of $40 \frac{\text{gm of salt}}{\text{L}}$. Salt water with concentration $10 \frac{\text{gm of salt}}{\text{L}}$ is entering the tank at the rate $5 \frac{\text{L}}{\text{hour}}$. The water is kept well mixed and drains at $5 \frac{\text{L}}{\text{hour}}$. Set up the initial value problem for the amount of salt in the tank S(t) at time t. Do not solve it.
 - **a**. Write the differential equation:

b. Write the initial condition:

14. (20 points) A sequence is defined recursively by

 $a_{n+1} = \sqrt{a_n} + 6$ with $a_1 = 100$

- **a**. Assuming the limit $L = \lim_{n \to \infty} a_n$ exists, find the possible limits, *L*.
- **b**. Write out the first 3 terms of the sequence:
- c. State a conjecture about boundedness: (Circle one answer and fill in the blank.)

The sequence is bounded above by _____. below

Now write the conjecture as an inequality:

d. Use Mathematical Induction to prove this conjecture.

(continued)

e. State a conjecture about monotonicity: (Circle one answer.)

The sequence is decreasing

.

Now write the conjecture as an inequality:

f. Use Mathematical Induction to prove this conjecture.

g. What do you conclude about the convergence or divergence of the series? Name any theorem you use.

. (18 points) Solve the initial value problem:

$$\frac{dy}{dx} = 3x^5 - 3x^2y \qquad y(1) = 2e^{-1}$$

Give the explicit solution not just the implicit solution.