Name \qquad
MATH 152H
Exam 3 Spring 2017
Sections 203/204 (circle one)

$1-12$	$/ 60$	14	$/ 20$
13	$/ 7$	15	$/ 18$
		Total	$/ 105$

Multiple Choice: (5 points each. No part credit.)

1. If it takes 12 Newtons of force to hold a spring at 3 meters from the rest position, how much work is done to stretch it from 2 meters to 4 meters from rest?
a. 24 Joules
b. 16 Joules
c. 8 Joules
d. 6 Joules
e. 4 Joules
2. Compute $\int_{0}^{\pi / 2} \tan \theta d \theta$.
a. $-\infty$
b. -1
c. 0
d. 1
e. ∞
3. Compute $\int_{4}^{\infty} \frac{1}{x^{3 / 2}} d x$.
a. -1
b. 0
c. $\frac{1}{3}$
d. 1
e. ∞
4. Compute $\int_{-8}^{8} \frac{1}{x^{5 / 3}} d x$.
a. $-\infty$
b. ∞
c. divergent but not $\pm \infty$
d. 0
e. $\frac{3}{4}$
5. The differential equation $\frac{d y}{d x}=2+2 y+x+x y$ is
a. both separable and linear
b. separable but not linear
c. linear but not separable
d. neither separable nor linear
6. Find the integrating factor for the differential equation $x^{3} \frac{d y}{d x}=x^{5}+3 x^{2} y$.
a. $I=x^{3}$
b. $I=\frac{1}{x^{3}}$
c. $I=e^{3 / x^{2}}$
d. $I=e^{-3 / x^{2}}$
e. $I=e^{-x^{3}}$
7. Solve the initial value problem $\frac{d y}{d x}=\frac{4}{3} \frac{x^{3}}{y^{2}}$ with $y(1)=2$. What is $y(0)$?
a. $\sqrt[3]{2}$
b. $\sqrt[3]{7}$
c. $-\sqrt[3]{15}$
d. 7
e. -15
8. Compute $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{4}}\right)^{3 / \ln n}$.
a. 12
b. 64
c. $e^{3 / 4}$
d. e^{12}
e. e^{-12}
9. Compute $\sum_{n=1}^{\infty}(-1)^{n} \frac{3}{2^{n}}$
a. -1
b. -3
c. 1
d. 2
e. 3
10. The series $\sum_{n=3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}$
a. diverges by the $n^{\text {th }}$ Term Divergence Test
b. converges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^{3}}$
c. diverges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^{3}}$
d. converges by the Integral Test
e. diverges by the Integral Test
11. If $S=\sum_{n=3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}$ is approximated by its $12^{\text {th }}$-partial sum $S_{12}=\sum_{n=3}^{12} \frac{2 n}{\left(n^{2}-4\right)^{2}}$, then the error $E_{12}=S-S_{12}$ is less than
a. $\ln 140$
b. $\frac{1}{2} \ln 140$
c. $\left(\frac{1}{140}\right)^{3}$
d. $\left(\frac{1}{140}\right)^{2}$
e. $\frac{1}{140}$
12. Compute $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$. Note: $\frac{1}{n(n-1)}=\frac{n}{n-1}-\frac{n+1}{n}$
a. $\frac{1}{3}$
b. $\frac{1}{2}$
c. 1
d. 2
e. 3

Work Out: (Points indicated. Part credit possible. Show all work.)
13. (7 points) A tank initially contains 25 L of salt water with a concentration of $40 \frac{\mathrm{gm} \mathrm{of} \mathrm{salt}}{\mathrm{L}}$. Salt water with concentration $10 \frac{\mathrm{gm} \text { of salt }}{\mathrm{L}}$ is entering the tank at the rate $5 \frac{\mathrm{~L}}{\text { hour }}$.
The water is kept well mixed and drains at $5 \frac{\mathrm{~L}}{\text { hour }}$.
Set up the initial value problem for the amount of salt in the tank $S(t)$ at time t. Do not solve it.
a. Write the differential equation:
b. Write the initial condition:
14. (20 points) A sequence is defined recursively by

$$
a_{n+1}=\sqrt{a_{n}}+6 \quad \text { with } \quad a_{1}=100
$$

a. Assuming the limit $L=\lim _{n \rightarrow \infty} a_{n}$ exists, find the possible limits, L.
b. Write out the first 3 terms of the sequence:
c. State a conjecture about boundedness: (Circle one answer and fill in the blank.)

$$
\text { The sequence is bounded } \begin{aligned}
& \text { above by } \\
& \text { below }
\end{aligned}
$$

Now write the conjecture as an inequality:
d. Use Mathematical Induction to prove this conjecture.
e. State a conjecture about monotonicity: (Circle one answer.)

The sequence is increasing
decreasing
Now write the conjecture as an inequality:
f. Use Mathematical Induction to prove this conjecture.
g. What do you conclude about the convergence or divergence of the series? Name any theorem you use.
15. (18 points) Solve the initial value problem:

$$
\frac{d y}{d x}=3 x^{5}-3 x^{2} y \quad y(1)=2 e^{-1}
$$

Give the explicit solution not just the implicit solution.

