Name			1-12	/60	14	/20
MATH 152H	Exam 3	Spring 2017	13	/7	15	/18
Sections 203/204 (circle one)	Solutions	P. Yasskin			Total	/105

Multiple Choice: (5 points each. No part credit.)

- **1**. If it takes 12 Newtons of force to hold a spring at 3 meters from the rest position, how much work is done to stretch it from 2 meters to 4 meters from rest?
 - **a**. 24 Joules correct choice
 - **b**. 16 Joules
 - c. 8 Joules
 - d. 6 Joules
 - e. 4 Joules

Solution: F = kx 12 = k(3) k = 4 $W = \int_{2}^{4} F dx = \int_{2}^{4} 4x dx = [2x^{2}]_{2}^{4} = 32 - 8 = 24$

2. Compute $\int_{0}^{\pi/2} \tan \theta \, d\theta$. a. $-\infty$

- **b**. −1
- **c**. 0
- **d**. 1
- e. ∞ correct choice

Solution: The integral is improper at $\theta = \frac{\pi}{2}$.

 $\int_{0}^{\pi/2} \tan\theta \, d\theta = \int_{0}^{\pi/2} \frac{\sin\theta}{\cos\theta} \, d\theta = \left[-\ln|\cos\theta| \right]_{0}^{\pi/2} = \lim_{\theta \to \frac{\pi}{2}^{-}} (-\ln|\cos\theta|) - (-\ln|\cos\theta|)$ Since $\cos\theta = 1$ and $\ln 1 = 0$, the second term is 0. As $\theta \to \frac{\pi}{2}^{-}$, we have θ is slightly less than $\frac{\pi}{2}$, and $\cos\theta$ is slightly greater than 0, and $\ln|\cos\theta|$ approaches $-\infty$, and $-\ln|\cos\theta|$ approaches $+\infty$. So $\int_{0}^{\pi/2} \tan\theta \, d\theta = \infty$.

3. Compute $\int_{4}^{\infty} \frac{1}{x^{3/2}} dx$. a. -1 b. 0 c. $\frac{1}{3}$ d. 1 correct choice e. ∞ Solution: $\int_{4}^{\infty} \frac{1}{x^{3/2}} dx = \left[\frac{-2}{x^{1/2}}\right]_{4}^{\infty} = 0 - \frac{-2}{4^{1/2}} = 1$

1

4. Compute $\int_{-8}^{8} \frac{1}{x^{5/3}} dx$. a. $-\infty$ b. ∞ c. divergent but not $\pm \infty$ correct choice d. 0 e. $\frac{3}{4}$

Solution: The integral is improper at x = 0.

$$\int_{-8}^{8} \frac{1}{x^{5/3}} dx = \int_{-8}^{0} x^{-5/3} dx + \int_{0}^{8} x^{-5/3} dx = \left[\frac{-3x^{-2/3}}{2}\right]_{-8}^{0} + \left[\frac{-3x^{-2/3}}{2}\right]_{0}^{8} = \left[\frac{-3}{2x^{2/3}}\right]_{-8}^{0-} + \left[\frac{-3}{2x^{2/$$

5. The differential equation $\frac{dy}{dx} = 2 + 2y + x + xy$ is

- a. both separable and linear correct choice
- b. separable but not linear
- c. linear but not separable
- d. neither separable nor linear

Solution: The integral is both separable and linear.

It separates into $\frac{dy}{dx} = 2 + 2y + x + xy = (2 + x)(1 + y)$ or $\frac{dy}{1 + y} = (2 + x)dx$. It is linear because y and $\frac{dy}{dx}$ only appear to the 1st power or it can be put in standard form: $\frac{dy}{dx} - (2 + x)y = 2 + x$.

6. Find the integrating factor for the differential equation $x^3 \frac{dy}{dx} = x^5 + 3x^2y$.

a. $I = x^{3}$ **b.** $I = \frac{1}{x^{3}}$ correct choice **c.** $I = e^{3/x^{2}}$ **d.** $I = e^{-3/x^{2}}$ **e.** $I = e^{-x^{3}}$

Solution: The standard form is $\frac{dy}{dx} - \frac{3}{x}y = x^2$. So $P = -\frac{3}{x}$ and the integrating factor is $I = e^{\int P dx} = e^{\int \frac{-3}{x} dx} = e^{-3\ln x} = x^{-3} = \frac{1}{x^3}$.

7. Solve the initial value problem $\frac{dy}{dx} = \frac{4}{3} \frac{x^3}{y^2}$ with y(1) = 2. What is y(0)?

a. ∛2 **b**. *3*√7 correct choice **c**. $-\sqrt[3]{15}$ **d**. 7 **e**. −15 **Solution**: Separate: $3y^2 dy = 4x^3 dx$ and integrate: $\int 3y^2 \, dy = \int 4x^3 \, dx \qquad \Rightarrow \qquad y^3 = x^4 + C$ Use the initial condition: x = 1, $y = 2 \implies 8 = 1 + C \implies C = 7$ So $y^3 = x^4 + 7$ $y(0)^3 = 7$ $y(0) = \sqrt[3]{7}$ 8. Compute $\lim_{n\to\infty} \left(\frac{1}{n^4}\right)^{3/\ln n}$. **a**. 12 **b**. 64 **c**. $e^{3/4}$ **d**. *e*¹² **e**. e^{-12} correct choice **Solution**: $\lim_{n \to \infty} \left(\frac{1}{n^4}\right)^{3/\ln n} = \lim_{n \to \infty} \exp \ln \left(\frac{1}{n^4}\right)^{3/\ln n} = \exp \lim_{n \to \infty} \frac{3}{\ln n} \ln \left(\frac{1}{n^4}\right) = \exp \lim_{n \to \infty} \frac{-12}{\ln n} \ln(n) = e^{-12}$ **9**. Compute $\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n}$ **a**. -1 correct choice **b**. -3 **c**. 1 **d**. 2 **e**. 3 **Solution**: $a = -\frac{3}{2}$ $r = -\frac{1}{2}$ |r| < 1 $\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n} = \frac{-\frac{3}{2}}{1 - (-\frac{1}{2})} = \frac{-3}{2+1} = -1$

10. The series $\sum_{n=3}^{\infty} \frac{2n}{(n^2-4)^2}$

- **a**. diverges by the n^{th} Term Divergence Test
- **b**. converges by a Simple Comparison with $\sum_{n=1}^{\infty} \frac{2}{n^3}$
- **c**. diverges by a Simple Comparison with $\sum_{n=1}^{\infty} \frac{2}{n^3}$
- d. converges by the Integral Test correct choice
- e. diverges by the Integral Test

Solution: $\lim_{n \to \infty} \frac{2n}{(n^2 - 4)^2} = 0$ So the *n*th Term Divergence Test fails.

A Simple Comparison will not work because $\sum_{n=3}^{\infty} \frac{2}{n^3}$ converges (*p*-series with p = 3 > 1) but $\frac{2n}{(n^2 - 4)^2} > \frac{2}{n^3}$. $\int_{3}^{\infty} \frac{2n}{(n^2 - 4)^2} dn = \left[\frac{-1}{n^2 - 4}\right]_{3}^{\infty} = 0 - \left(\frac{-1}{9 - 4}\right) = \frac{1}{5}$ converges.

So $\sum_{n=3} \frac{2n}{(n^2-4)^2}$ converges by the Integral Test.

11. If $S = \sum_{n=3}^{\infty} \frac{2n}{(n^2 - 4)^2}$ is approximated by its 12th-partial sum $S_{12} = \sum_{n=3}^{12} \frac{2n}{(n^2 - 4)^2}$, then the error $E_{12} = S - S_{12}$ is less than

a. $\ln 140$ b. $\frac{1}{2} \ln 140$ c. $\left(\frac{1}{140}\right)^{3}$ d. $\left(\frac{1}{140}\right)^{2}$ e. $\frac{1}{140}$ correct choice

Solution: $E_{12} = S - S_{12} = \sum_{n=13}^{\infty} \frac{2n}{(n^2 - 4)^2} < \int_{12}^{\infty} \frac{2n}{(n^2 - 4)^2} dn = \left[\frac{-1}{n^2 - 4}\right]_{12}^{\infty} = 0 - \left(\frac{-1}{144 - 4}\right) = \frac{1}{140}$

12. Compute
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$
. Note: $\frac{1}{n(n-1)} = \frac{n}{n-1} - \frac{n+1}{n}$
a. $\frac{1}{3}$
b. $\frac{1}{2}$
c. 1 correct choice
d. 2
e. 3
Solution: $\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \sum_{n=2}^{\infty} \left(\frac{n}{n-1} - \frac{n+1}{n}\right)$
 $S_k = \sum_{n=2}^{k} \frac{1}{n(n-1)} = \sum_{n=2}^{k} \left(\frac{n}{n-1} - \frac{n+1}{n}\right) = \left(\frac{2}{1} - \frac{3}{2}\right) + \left(\frac{3}{2} - \frac{4}{3}\right) + \dots + \left(\frac{k}{k-1} - \frac{k+1}{k}\right)$
 $= \frac{2}{1} - \frac{k+1}{k}$ $\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \left(2 - \frac{k+1}{k}\right) = 1$

Work Out: (Points indicated. Part credit possible. Show all work.)

13. (7 points) A tank initially contains 25 L of salt water with a concentration of $40 \frac{\text{gm of salt}}{\text{L}}$. Salt water with concentration $10 \frac{\text{gm of salt}}{\text{L}}$ is entering the tank at the rate $5 \frac{\text{L}}{\text{hour}}$. The water is kept well mixed and drains at $5 \frac{\text{L}}{\text{hour}}$.

Set up the initial value problem for the amount of salt in the tank S(t) at time t. Do not solve it.

a. Write the differential equation:

Solution:
$$\frac{dS}{dt} = 10 \frac{\text{gm}}{\text{L}} 5 \frac{\text{L}}{\text{hour}} - \underbrace{\frac{S(t) \text{ g}}{25 \text{ L}} 5 \frac{\text{L}}{\text{hour}}}_{\text{out}} \text{ or } \frac{dS}{dt} = 50 - \frac{1}{5}S$$

b. Write the initial condition:

Solution: $S(0) = 40 \frac{\text{gm}}{\text{L}} 25 \text{ L} = 1000 \text{ gm}$

14. (20 points) A sequence is defined recursively by

 $a_{n+1} = \sqrt{a_n} + 6$ with $a_1 = 100$

a. Assuming the limit $L = \lim_{n \to \infty} a_n$ exists, find the possible limits, *L*.

Solution: $L = \sqrt{L} + 6 \implies L - 6 = \sqrt{L} \implies (L - 6)^2 = L$ $\Rightarrow L^2 - 12L + 36 = L \implies L^2 - 13L + 36 = 0 \implies (L - 4)(L - 9) = 0$ $\Rightarrow L = 4,9$

b. Write out the first 3 terms of the sequence:

Solution: $a_1 = 100$ $a_2 = \sqrt{100} + 6 = 16$ $a_3 = \sqrt{16} + 6 = 10$

c. State a conjecture about boundedness: (Circle one answer and fill in the blank.)

Now write the conjecture as an inequality:

Solution: $a_n \ge 9$.

d. Use Mathematical Induction to prove this conjecture.

Solution: Assume $a_k \ge 9$. Then $\sqrt{a_k} \ge 3$ and $\sqrt{a_k} + 6 \ge 9$. Or $a_{k+1} \ge 9$. So $a_n \ge 9$ for all n.

e. State a conjecture about monotonicity: (Circle one answer.)

The sequence is $\frac{\text{increasing}}{\text{decreasing}}$.

Now write the conjecture as an inequality:

Solution: $a_{n+1} \leq a_n$.

f. Use Mathematical Induction to prove this conjecture.

Solution: Assume $a_{k+1} \leq a_k$. Then $\sqrt{a_{k+1}} \leq \sqrt{a_k}$ and $\sqrt{a_{k+1}} + 6 \leq \sqrt{a_k} + 6$. Or $a_{k+2} \leq a_{k+1}$. So $a_{n+1} \leq a_n$ for all n.

g. What do you conclude about the convergence or divergence of the series? Name any theorem you use.

Solution: The sequence is decreasing and bounded below by 9. So it converges to 9 by the Bounded Monotonic Sequence Theorem. **15**. (18 points) Solve the initial value problem:

$$\frac{dy}{dx} = 3x^5 - 3x^2y \qquad y(1) = 2e^{-1}$$

Give the explicit solution not just the implicit solution.

Solution: The equation is linear. Its standard form is

$$\frac{dy}{dx} + 3x^2y = 3x^5$$

We identify $P = 3x^2$ and find the integration factor $I = e^{\int P dx} = e^{\int 3x^2 dx} = e^{x^3}$. We multiply thru by the integrating factor and identify the left side as the derivative of a product:

$$e^{x^3}\frac{dy}{dx} + 3x^2e^{x^3}y = 3x^5e^{x^3}$$
$$\frac{d}{dx}(e^{x^3}y) = 3x^5e^{x^3}$$

We integrate both sides and use the substitution $w = x^3$ and $dw = 3x^2 dx$

$$e^{x^3}y = \int 3x^5 e^{x^3} dx = \int w e^w dw$$

Now use integration by parts with

$$u = w \qquad dv = e^w dw$$
$$du = dw \qquad v = e^w$$

$$e^{x^3}y = we^w - \int e^w dw = we^w - e^w + C = x^3e^{x^3} - e^{x^3} + C$$

Next we use the initial condition which says x = 1 and $y = 2e^{-1}$ $e^{x^3}v = x^3e^{x^3} - e^{x^3} + C$

$$e^1 2e^{-1} = 1e^1 - e^1 + C$$

So C = 2 and the implicit solution is

$$e^{x^3}y = x^3e^{x^3} - e^{x^3} + 2$$

Finally the explicit solution is

$$y = x^3 - 1 + 2e^{-x^3}$$

Check: $y(1) = 1 - 1 + 2e^{-1} = 2e^{-1}$ and $\frac{dy}{dx} = 3x^2 - 6x^2e^{-x^3}$ $3x^2y = 3x^5 - 3x^2 + 6x^2e^{-x^3}$

$$\frac{dy}{dx} + 3x^2y = 3x^5$$
 which matches