Name $\qquad$
MATH 152H Exam 3 Spring 2017
Sections 203/204 (circle one) Solutions P. Yasskin

| $1-12$ | $/ 60$ | 14 | $/ 20$ |
| :---: | ---: | ---: | ---: |
| 13 | $/ 7$ | 15 | $/ 18$ |
|  |  | Total | $/ 105$ |

Multiple Choice: (5 points each. No part credit.)

1. If it takes 12 Newtons of force to hold a spring at 3 meters from the rest position, how much work is done to stretch it from 2 meters to 4 meters from rest?
a. 24 Joules correct choice
b. 16 Joules
c. 8 Joules
d. 6 Joules
e. 4 Joules

Solution: $F=k x \quad 12=k(3) \quad k=4 \quad W=\int_{2}^{4} F d x=\int_{2}^{4} 4 x d x=\left[2 x^{2}\right]_{2}^{4}=32-8=24$
2. Compute $\int_{0}^{\pi / 2} \tan \theta d \theta$.
a. $-\infty$
b. -1
c. 0
d. 1
e. $\infty$ correct choice

Solution: The integral is improper at $\theta=\frac{\pi}{2}$.
$\int_{0}^{\pi / 2} \tan \theta d \theta=\int_{0}^{\pi / 2} \frac{\sin \theta}{\cos \theta} d \theta=[-\ln |\cos \theta|]_{0}^{\pi / 2}=\lim _{\theta \rightarrow \frac{\pi}{2}^{-}}(-\ln |\cos \theta|)-(-\ln |\cos 0|)$
Since $\cos 0=1$ and $\ln 1=0$, the second term is 0 .
As $\theta \rightarrow \frac{\pi}{2}^{-}$, we have $\theta$ is slightly less than $\frac{\pi}{2}$, and $\cos \theta$ is slightly greater than 0 , and $\ln |\cos \theta|$ approaches $-\infty$, and $-\ln |\cos \theta|$ approaches $+\infty$. So $\int_{0}^{\pi / 2} \tan \theta d \theta=\infty$.
3. Compute $\int_{4}^{\infty} \frac{1}{x^{3 / 2}} d x$.
a. -1
b. 0
c. $\frac{1}{3}$
d. 1 correct choice
e. $\infty$

Solution: $\int_{4}^{\infty} \frac{1}{x^{3 / 2}} d x=\left[\frac{-2}{x^{1 / 2}}\right]_{4}^{\infty}=0-\frac{-2}{4^{1 / 2}}=1$
4. Compute $\int_{-8}^{8} \frac{1}{x^{5 / 3}} d x$.
a. $-\infty$
b. $\infty$
c. divergent but not $\pm \infty$ correct choice
d. 0
e. $\frac{3}{4}$

Solution: The integral is improper at $x=0$.

$$
\begin{aligned}
\int_{-8}^{8} & \frac{1}{x^{5 / 3}} d x=\int_{-8}^{0} x^{-5 / 3} d x+\int_{0}^{8} x^{-5 / 3} d x=\left[\frac{-3 x^{-2 / 3}}{2}\right]_{-8}^{0}+\left[\frac{-3 x^{-2 / 3}}{2}\right]_{0}^{8}=\left[\frac{-3}{2 x^{2 / 3}}\right]_{-8}^{0^{-}}+\left[\frac{-3}{2 x^{2 / 3}}\right]_{0^{+}}^{8} \\
& =\left(\frac{-3}{2\left(0^{-}\right)^{2 / 3}}\right)-\left(\frac{-3}{2(-8)^{2 / 3}}\right)+\left(\frac{-3}{2(8)^{2 / 3}}\right)-\left(\frac{-3}{2\left(0^{+}\right)^{2 / 3}}\right) \\
& =(-\infty)-\left(\frac{-3}{8}\right)+\left(\frac{-3}{8}\right)-(-\infty) \text { = undefined and not } \pm \infty
\end{aligned}
$$

5. The differential equation $\frac{d y}{d x}=2+2 y+x+x y$ is
a. both separable and linear correct choice
b. separable but not linear
c. linear but not separable
d. neither separable nor linear

Solution: The integral is both separable and linear.
It separates into $\frac{d y}{d x}=2+2 y+x+x y=(2+x)(1+y)$ or $\frac{d y}{1+y}=(2+x) d x$.
It is linear because $y$ and $\frac{d y}{d x}$ only appear to the $1^{\text {st }}$ power or it can be put in standard form:

$$
\frac{d y}{d x}-(2+x) y=2+x
$$

6. Find the integrating factor for the differential equation $x^{3} \frac{d y}{d x}=x^{5}+3 x^{2} y$.
a. $I=x^{3}$
b. $I=\frac{1}{x^{3}} \quad$ correct choice
c. $I=e^{3 / x^{2}}$
d. $I=e^{-3 / x^{2}}$
e. $I=e^{-x^{3}}$

Solution: The standard form is $\frac{d y}{d x}-\frac{3}{x} y=x^{2}$. So $P=-\frac{3}{x}$ and the integrating factor is $I=e^{\int P d x}=e^{\int \frac{-3}{x} d x}=e^{-3 \ln x}=x^{-3}=\frac{1}{x^{3}}$.
7. Solve the initial value problem $\frac{d y}{d x}=\frac{4}{3} \frac{x^{3}}{y^{2}}$ with $y(1)=2$. What is $y(0)$ ?
a. $\sqrt[3]{2}$
b. $\sqrt[3]{7}$ correct choice
c. $-\sqrt[3]{15}$
d. 7
e. -15

Solution: Separate: $3 y^{2} d y=4 x^{3} d x$ and integrate:

$$
\int 3 y^{2} d y=\int 4 x^{3} d x \quad \Rightarrow \quad y^{3}=x^{4}+C
$$

Use the initial condition: $x=1, y=2 \Rightarrow 8=1+C \quad \Rightarrow \quad C=7$
So $\quad y^{3}=x^{4}+7 \quad y(0)^{3}=7 \quad y(0)=\sqrt[3]{7}$
8. Compute $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{4}}\right)^{3 / \ln n}$.
a. 12
b. 64
c. $e^{3 / 4}$
d. $e^{12}$
e. $e^{-12}$ correct choice

Solution: $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{4}}\right)^{3 / \ln n}=\lim _{n \rightarrow \infty} \exp \ln \left(\frac{1}{n^{4}}\right)^{3 / \ln n}=\exp \lim _{n \rightarrow \infty} \frac{3}{\ln n} \ln \left(\frac{1}{n^{4}}\right)=\exp \lim _{n \rightarrow \infty} \frac{-12}{\ln n} \ln (n)=e^{-12}$
9. Compute $\sum_{n=1}^{\infty}(-1)^{n} \frac{3}{2^{n}}$
a. -1 correct choice
b. -3
c. 1
d. 2
e. 3

Solution: $a=-\frac{3}{2} \quad r=-\frac{1}{2} \quad|r|<1 \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{3}{2^{n}}=\frac{-\frac{3}{2}}{1-\left(-\frac{1}{2}\right)}=\frac{-3}{2+1}=-1$
10. The series $\sum_{n=3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}$
a. diverges by the $n^{\text {th }}$ Term Divergence Test
b. converges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^{3}}$
c. diverges by a Simple Comparison with $\sum_{n=3}^{\infty} \frac{2}{n^{3}}$
d. converges by the Integral Test correct choice
e. diverges by the Integral Test

Solution: $\lim _{n \rightarrow \infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}=0$ So the $n^{\text {th }}$ Term Divergence Test fails.
A Simple Comparison will not work because $\sum_{n=3}^{\infty} \frac{2}{n^{3}}$ converges ( $p$-series with $p=3>1$ ) but $\frac{2 n}{\left(n^{2}-4\right)^{2}}>\frac{2}{n^{3}}$.
$\int_{3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}} d n=\left[\frac{-1}{n^{2}-4}\right]_{3}^{\infty}=0-\left(\frac{-1}{9-4}\right)=\frac{1}{5} \quad$ converges.
So $\sum_{n=3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}$ converges by the Integral Test.
11. If $S=\sum_{n=3}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}$ is approximated by its $12^{\text {th }}$-partial sum $S_{12}=\sum_{n=3}^{12} \frac{2 n}{\left(n^{2}-4\right)^{2}}$, then the error $E_{12}=S-S_{12}$ is less than
a. $\ln 140$
b. $\frac{1}{2} \ln 140$
c. $\left(\frac{1}{140}\right)^{3}$
d. $\left(\frac{1}{140}\right)^{2}$
e. $\frac{1}{140}$ correct choice

Solution: $\quad E_{12}=S-S_{12}=\sum_{n=13}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}}<\int_{12}^{\infty} \frac{2 n}{\left(n^{2}-4\right)^{2}} d n=\left[\frac{-1}{n^{2}-4}\right]_{12}^{\infty}=0-\left(\frac{-1}{144-4}\right)=\frac{1}{140}$
12. Compute $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$. Note: $\frac{1}{n(n-1)}=\frac{n}{n-1}-\frac{n+1}{n}$
a. $\frac{1}{3}$
b. $\frac{1}{2}$
c. 1 correct choice
d. 2
e. 3

Solution: $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\sum_{n=2}^{\infty}\left(\frac{n}{n-1}-\frac{n+1}{n}\right)$
$\begin{aligned} S_{k}= & \sum_{n=2}^{k} \frac{1}{n(n-1)}=\sum_{n=2}^{k}\left(\frac{n}{n-1}-\frac{n+1}{n}\right)=\left(\frac{2}{1}-\frac{3}{2}\right)+\left(\frac{3}{2}-\frac{4}{3}\right)+\cdots+\left(\frac{k}{k-1}-\frac{k+1}{k}\right) \\ = & \frac{2}{1}-\frac{k+1}{k} \quad \sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(2-\frac{k+1}{k}\right)=1\end{aligned}$

Work Out: (Points indicated. Part credit possible. Show all work.)
13. (7 points) A tank initially contains 25 L of salt water with a concentration of $40 \frac{\mathrm{gm} \text { of salt }}{\mathrm{L}}$.

Salt water with concentration $10 \frac{\mathrm{gm} \text { of salt }}{\mathrm{L}}$ is entering the tank at the rate $5 \frac{\mathrm{~L}}{\text { hour }}$.
The water is kept well mixed and drains at $5 \frac{\mathrm{~L}}{\text { hour }}$.
Set up the initial value problem for the amount of salt in the tank $S(t)$ at time $t$. Do not solve it.
a. Write the differential equation:

Solution: $\quad \frac{d S}{d t}=\underbrace{10 \frac{\mathrm{gm}}{\mathrm{L}} 5 \frac{\mathrm{~L}}{\mathrm{hour}}}_{\text {in }}-\underbrace{\frac{S(t) \mathrm{g}}{25 \mathrm{~L}} 5 \frac{\mathrm{~L}}{\text { hour }}}_{\text {out }}$ or $\frac{d S}{d t}=50-\frac{1}{5} S$
b. Write the initial condition:

Solution: $\quad S(0)=40 \frac{\mathrm{gm}}{\mathrm{L}} 25 \mathrm{~L}=1000 \mathrm{gm}$
14. (20 points) A sequence is defined recursively by

$$
a_{n+1}=\sqrt{a_{n}}+6 \quad \text { with } \quad a_{1}=100
$$

a. Assuming the limit $L=\lim _{n \rightarrow \infty} a_{n}$ exists, find the possible limits, $L$.

$$
\begin{aligned}
& \text { Solution: } \quad L=\sqrt{L}+6 \quad \Rightarrow \quad \begin{array}{l}
L-6=\sqrt{L} \quad \Rightarrow \quad(L-6)^{2}=L \\
\Rightarrow \quad L^{2}-12 L+36=L \\
\Rightarrow \quad L=4,9
\end{array} \quad \Rightarrow \quad L^{2}-13 L+36=0 \quad \Rightarrow \quad(L-4)(L-9)=0
\end{aligned}
$$

b. Write out the first 3 terms of the sequence:

Solution: $a_{1}=100 \quad a_{2}=\sqrt{100}+6=16 \quad a_{3}=\sqrt{16}+6=10$
c. State a conjecture about boundedness: (Circle one answer and fill in the blank.)
The sequence is bounded above by below

Now write the conjecture as an inequality:
Solution: $\quad a_{n} \geq 9$.
d. Use Mathematical Induction to prove this conjecture.

Solution: Assume $a_{k} \geq 9$. Then $\sqrt{a_{k}} \geq 3$ and $\sqrt{a_{k}}+6 \geq 9$. Or $a_{k+1} \geq 9$.
So $a_{n} \geq 9$ for all $n$.
e. State a conjecture about monotonicity: (Circle one answer.)


Now write the conjecture as an inequality:
Solution: $\quad a_{n+1} \leq a_{n}$.
f. Use Mathematical Induction to prove this conjecture.

Solution: Assume $a_{k+1} \leq a_{k}$. Then $\sqrt{a_{k+1}} \leq \sqrt{a_{k}}$ and $\sqrt{a_{k+1}}+6 \leq \sqrt{a_{k}}+6$.
Or $a_{k+2} \leq a_{k+1}$. So $a_{n+1} \leq a_{n}$ for all $n$.
g. What do you conclude about the convergence or divergence of the series?

Name any theorem you use.
Solution: The sequence is decreasing and bounded below by 9 . So it converges to 9 by the Bounded Monotonic Sequence Theorem.
15. (18 points) Solve the initial value problem:

$$
\frac{d y}{d x}=3 x^{5}-3 x^{2} y \quad y(1)=2 e^{-1}
$$

Give the explicit solution not just the implicit solution.
Solution: The equation is linear. Its standard form is

$$
\frac{d y}{d x}+3 x^{2} y=3 x^{5}
$$

We identify $P=3 x^{2}$ and find the integration factor $I=e^{\int P d x}=e^{\int 3 x^{2} d x}=e^{x^{3}}$.
We multiply thru by the integrating factor and identify the left side as the derivative of a product:

$$
\begin{aligned}
e^{x^{3}} \frac{d y}{d x}+3 x^{2} e^{x^{3}} y & =3 x^{5} e^{x^{3}} \\
\frac{d}{d x}\left(e^{x^{3}} y\right) & =3 x^{5} e^{x^{3}}
\end{aligned}
$$

We integrate both sides and use the substitution $w=x^{3}$ and $d w=3 x^{2} d x$

Now use integration by parts with

$$
\begin{aligned}
e^{x^{3}} y & =\int 3 x^{5} e^{x^{3}} d x=\int w e^{w} d w \\
u & =w \quad d v=e^{w} d w \\
d u & =d w \quad v=e^{w}
\end{aligned}
$$

$$
e^{x^{3}} y=w e^{w}-\int e^{w} d w=w e^{w}-e^{w}+C=x^{3} e^{x^{3}}-e^{x^{3}}+C
$$

Next we use the initial condition which says $x=1$ and $y=2 e^{-1}$

$$
\begin{aligned}
e^{x^{3}} y & =x^{3} e^{x^{3}}-e^{x^{3}}+C \\
e^{1} 2 e^{-1} & =1 e^{1}-e^{1}+C
\end{aligned}
$$

So $C=2$ and the implicit solution is

$$
e^{x^{3}} y=x^{3} e^{x^{3}}-e^{x^{3}}+2
$$

Finally the explicit solution is

$$
y=x^{3}-1+2 e^{-x^{3}}
$$

Check: $\quad y(1)=1-1+2 e^{-1}=2 e^{-1}$ and

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}-6 x^{2} e^{-x^{3}} \\
3 x^{2} y & =3 x^{5}-3 x^{2}+6 x^{2} e^{-x^{3}} \\
\frac{d y}{d x}+3 x^{2} y & =3 x^{5} \quad \text { which matches }
\end{aligned}
$$

