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1. (e)

• Examine the correspondingseries.

∞∑
n=0

an =
∞∑

n=0

(−10)n

n!
= e−10

Since this series converges, wemusthave lim
n→∞ an = 0.

• Alternatively,look at ln|an|. As n → ∞, we have

ln
10n

n!
= n ln 10−

n∑
k=1

ln k =
n∑

k=1

(ln 10− ln k) → −∞.

Thus lim|an| = lim eln|an| = 0. Hence liman = 0.

2. (c) The series
∑

(−1)n e1/n diverges by the Test for
Divergence since lim

n→∞ an = lim
n→∞ (−1)n e1/n 6= 0. Indeed,

lim inf an = −1 and lim supan = +1.

3. (d) Compute a few partial sums of thistelescopingseries
until it’s clear what’s happening. Nows1 = cos1

2 − cos1
3,

s2 = cos1
2 − cos1

4, s3 = cos1
2 − cos1

5, and in general,

sn = cos1
2 − cos 1

n+2. Hence asn → ∞, we have

sn → cos1
2 − cos 0= cos1

2 − 1.

4. (d) This series converges via the Geometric Series Theorem.

∞∑
n=1

3 (2)2n

5n+1
=

∞∑
n=1

3 (4)

52

(
4

5

)n−1

= 12/25

1 − 4
5

= 12/25

1/5
= 12

5

5. (b) For all realx we have

x cos
(

x3
)

= x
∞∑

n=0

(−1)n (x3)2n

(2n)!
=

∞∑
n=0

(−1)n x6n+1

(2n)!
.

6. (c) Since the power series
∑

cnxn, centered ata = 0,
converges atx = 3 and diverges atx = 5, we know that the
radius of convergenceR is at least 3 and at most 5.
Accordingly, itmustbe true that series converges atx = 2,
but diverges atx = 6. (Forx = 4, the series may converge or
it may diverge.)

7. (d) At x = π
3 we have

f (x) = cosx = 1/2

f ′ (x) = − sinx = −√
3/2

f ′′ (x) = − cosx = −1/2

f ′′′ (x) = sinx = √
3/2

Therefore,

T3 (x) =
3∑

n=0

f (n)
(
π
3

)
n!

(
x − π

3

)n

= 1
2 −

√
3

2

(
x − π

3

)− 1
4

(
x − π

3

)2 +
√

3
12

(
x − π

3

)3

8. (e) The desired coefficient isc3 = f ′′′ (3)

3!
. Compute the

requisite derivatives off (x) = ln x: f ′ (x) = 1/x = x−1,

f ′′ (x) = −x−2, and f ′′′ (x) = 2x−3. Soc3 = 2/27

6
= 1

81
.

9. (c) We have

∞∑
n=1

an = lim
n→∞ sn = lim

n→∞
4n − 5

2 + n
= lim

n→∞
4 − 5

n
2
n + 1

= 4.

10. (e) Sincef (x) = 1/x = x−1, we havef ′ (x) = −x−2,
f ′′ (x) = 2x−3, and f ′′′ (x) = −6x−4. Thus for 2≤ x ≤ 6,∣∣∣ f (3) (x)

∣∣∣ = 6

x4
≤ 6

(2)4
= M and therefore

|R2 (x)| ≤ M |x − 4|3
3!

≤
(
6/24) (2)3

6
= 1

2
for 2 ≤ x ≤ 6.

11. Use the Ratio Test or the Root Test with GFF to determine
the radius of convergenceR.

• The series will converge via the Ratio Test provided

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1 |x + 1|n+1

n + 1
· n

2n |x + 1|n

= lim
n→∞

2 |x + 1|
1 + 1

n

= 2 |x + 1| < 1

or |x − (−1)| < 1
2. ThusR = 1

2.

• Or, asn → ∞ the Root Test with GFF requires

n
√|an| = 2 |x + 1|

n
√

n
→ 2 |x + 1| < 1

or |x − (−1)| < 1
2. ThusR = 1

2.

• With centera = −1 and radiusR = 1
2, let’s examine

convergence of the series at the endpoints of the interval

(a − R, a + R) =
(
−3

2,−1
2

)
. At x = −3

2, the series is∑ 1
n , the divergent harmonic series (orp-series with

p = 1 ≤ 1). At x = −1
2, the we have the alternating

harmonic series
∑ (−1)n

n , which converges by the

Alternating Series Test sincebn = |an| = 1
n ↓ 0. Hence

the interval of convergence isI =
(
−3

2,−1
2

]
.

[Please turn the page for solutions to Problems 12–15.]
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12. • A series
∑

an converges absolutely if and only if the
series of absolute values

∑ |an| converges.

• Accordingly, the series in question converges absolutely
via the Integral Test.∫ ∞

2
(ln x)−4 1

x
dx = lim

t→∞
(
−1

3 (ln x)−3
)∣∣∣t

2

= lim
t→∞

(
− 1

3(ln t)3 + 1
3(ln 2)3

)
= 1

3 (ln 2)3

13. (a) We have

∫ 0.1

0
e−x2

dx =
∫ 1/10

0

∞∑
n=0

(−x2)n
n!

dx

=
∫ 1/10

0

∞∑
n=0

(−1)n x2n

n!
dx

=
( ∞∑

n=0

(−1)n x2n+1

(2n + 1) n!

)∣∣∣∣∣
1/10

0

=
∞∑

n=0

(−1)n
(

1
10

)2n+1

(2n + 1) n!

(b) The third partial sum is1
10 − 1

3

(
1
10

)3 + 1
10

(
1
10

)5
or

approximately 0.099668.

(c) The Alternating Series Estimation Theorem guarantees
that the magnitude of the error in this approximation is
less than or equal to that of the first neglected term.
This corresponds ton = 3. Therefore, the error satisfies

|error| ≤ 10−7

7 (3!)
= 1

42× 107 ≈ 2.38× 10−9.

14. (a) The series
∑ (−1)n

n3/4
converges via the Alternating

Series Test sincebn = |an| = 1

n3/4
↓ 0.

(b) The series
∑ n2

n4 − n
is asymptotically similar to the

convergentp-series
∑ 1

n2
(herep = 2 > 1) and thus

converges by the Limit Comparison Theorem.

lim
n→∞

n2

n4 − n
1/n2

= lim
n→∞

n4

n4 − n
= lim

n→∞
1

1 − 1
n3

= 1 > 0

15. • Computing the Maclaurin series via the definition is
straightforward. (“Brute force has a charm all its own.”)

f (x) = ln (1 + 8x)

f ′ (x) = 8 (1 + 8x)−1

f ′′ (x) = −82 (1 + 8x)−2

f ′′′ (x) = 2 · 83 (1 + 8x)−3

f (4) (x) = −6 · 84 (1 + 8x)−4

...

f (n) (x) = (−1)n−1 (n − 1)! · 8n (1 + 8x)−n

Thus f (n) (0) = (−1)n−1 8n (n − 1)! for n ≥ 1 and
f (0) (0) = f (0) = ln 1 = 0.

• Hence

ln (1 + 8x) = f (x) =
∞∑

n=0

f (n) (0)

n!
xn =

∞∑
n=1

(−1)n−1 8nxn

n
.

• As n → ∞ the Root Test with GFF requires

n
√|an| = 8 |x|

n
√

n
→ 8 |x| < 1

or |x| < 1
8. ThusR = 1

8. (The Ratio Test gives the
same result.)

• Alternatively,manipulate a known geometric series.

Note that ln(1 + z) is an antiderivative of
1

1 + z
.

ln (1 + z) =
∫

1

1 + z
dz =

∫
1

1 − (−z)
dz

=
∫ ∞∑

n=0

(−z)n dz, if |−z| < 1

=
∫ ∞∑

n=0

(−1)n zn dz, if |z| < 1

= C +
∞∑

n=0

(−1)n zn+1

n + 1

ln (1 + z) = C +
∞∑

k=1

(−1)k−1 zk

k

0 = ln (1 + 0) = C +
∑

0 = C

Thus ln(1 + z) =
∞∑

k=1

(−1)k−1 zk

k
.

We require|z| < 1. Hence the radius of convergence
for thisseries isR = 1.

• Now setz = 8x. Then

ln (1 + 8x) =
∞∑

k=1

(−1)k−1 (8x)k

k
=

∞∑
k=1

(−1)k−1 8kxk

k

provided|z| = |8x| < 1 or |x| < 1
8. Thus the radius of

convergence ofour series isR = 1
8.
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