Spring 2005 Math 152
 Exam 3A: Solutions
 Mon, 02/May
 (C)2005, Art Belmonte

1. (e)

- Examine the corresponding series.

$$
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{(-10)^{n}}{n!}=e^{-10}
$$

Since this series converges, we must have $\lim _{n \rightarrow \infty} a_{n}=0$.

- Alternatively, look at $\ln \left|a_{n}\right|$. As $n \rightarrow \infty$, we have
$\ln \frac{10^{n}}{n!}=n \ln 10-\sum_{k=1}^{n} \ln k=\sum_{k=1}^{n}(\ln 10-\ln k) \rightarrow-\infty$.
Thus $\lim \left|a_{n}\right|=\lim e^{\ln \left|a_{n}\right|}=0$. Hence $\lim a_{n}=0$.

2. (c) The series $\sum(-1)^{n} e^{1 / n}$ diverges by the Test for Divergence since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)^{n} e^{1 / n} \neq 0$. Indeed, $\liminf a_{n}=-1$ and $\lim \sup a_{n}=+1$.
3. (d) Compute a few partial sums of this telescoping series until it's clear what's happening. Now $s_{1}=\cos \frac{1}{2}-\cos \frac{1}{3}$, $s_{2}=\cos \frac{1}{2}-\cos \frac{1}{4}, s_{3}=\cos \frac{1}{2}-\cos \frac{1}{5}$, and in general, $s_{n}=\cos \frac{1}{2}-\cos \frac{1}{n+2}$. Hence as $n \rightarrow \infty$, we have $s_{n} \rightarrow \cos \frac{1}{2}-\cos 0=\cos \frac{1}{2}-1$.
4. (d) This series converges via the Geometric Series Theorem.

$$
\sum_{n=1}^{\infty} \frac{3(2)^{2 n}}{5^{n+1}}=\sum_{n=1}^{\infty} \frac{3(4)}{5^{2}}\left(\frac{4}{5}\right)^{n-1}=\frac{12 / 25}{1-\frac{4}{5}}=\frac{12 / 25}{1 / 5}=\frac{12}{5}
$$

5. (b) For all real x we have

$$
x \cos \left(x^{3}\right)=x \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+1}}{(2 n)!}
$$

6. (c) Since the power series $\sum c_{n} x^{n}$, centered at $a=0$, converges at $x=3$ and diverges at $x=5$, we know that the radius of convergence R is at least 3 and at most 5 .
Accordingly, it must be true that series converges at $x=2$, but diverges at $x=6$. (For $x=4$, the series may converge or it may diverge.)
7. (d) At $x=\frac{\pi}{3}$ we have

$$
\begin{aligned}
f(x) & =\cos x=1 / 2 \\
f^{\prime}(x) & =-\sin x=-\sqrt{3} / 2 \\
f^{\prime \prime}(x) & =-\cos x=-1 / 2 \\
f^{\prime \prime \prime}(x) & =\sin x=\sqrt{3} / 2
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
T_{3}(x) & =\sum_{n=0}^{3} \frac{f^{(n)}\left(\frac{\pi}{3}\right)}{n!}\left(x-\frac{\pi}{3}\right)^{n} \\
& =\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}+\frac{\sqrt{3}}{12}\left(x-\frac{\pi}{3}\right)^{3}
\end{aligned}
$$

8. (e) The desired coefficient is $c_{3}=\frac{f^{\prime \prime \prime}(3)}{3!}$. Compute the requisite derivatives of $f(x)=\ln x: f^{\prime}(x)=1 / x=x^{-1}$, $f^{\prime \prime}(x)=-x^{-2}$, and $f^{\prime \prime \prime}(x)=2 x^{-3}$. So $c_{3}=\frac{2 / 27}{6}=\frac{1}{81}$.
9. (c) We have

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{4 n-5}{2+n}=\lim _{n \rightarrow \infty} \frac{4-\frac{5}{n}}{\frac{2}{n}+1}=4
$$

10. (e) Since $f(x)=1 / x=x^{-1}$, we have $f^{\prime}(x)=-x^{-2}$, $f^{\prime \prime}(x)=2 x^{-3}$, and $f^{\prime \prime \prime}(x)=-6 x^{-4}$. Thus for $2 \leq x \leq 6$, $\left|f^{(3)}(x)\right|=\frac{6}{x^{4}} \leq \frac{6}{(2)^{4}}=M$ and therefore
$\left|R_{2}(x)\right| \leq \frac{M|x-4|^{3}}{3!} \leq \frac{\left(6 / 2^{4}\right)(2)^{3}}{6}=\frac{1}{2}$ for $2 \leq x \leq 6$.
11. Use the Ratio Test or the Root Test with GFF to determine the radius of convergence R.

- The series will converge via the Ratio Test provided

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{2^{n+1}|x+1|^{n+1}}{n+1} \cdot \frac{n}{2^{n}|x+1|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2|x+1|}{1+\frac{1}{n}}=2|x+1|<1 \\
\text { or }|x-(-1)|< & <\frac{1}{2} . \text { Thus } R=\frac{1}{2} .
\end{aligned}
$$

- Or, as $n \rightarrow \infty$ the Root Test with GFF requires

$$
\sqrt[n]{\left|a_{n}\right|}=\frac{2|x+1|}{\sqrt[n]{n}} \rightarrow 2|x+1|<1
$$

or $|x-(-1)|<\frac{1}{2}$. Thus $R=\frac{1}{2}$.

- With center $a=-1$ and radius $R=\frac{1}{2}$, let's examine convergence of the series at the endpoints of the interval $(a-R, a+R)=\left(-\frac{3}{2},-\frac{1}{2}\right)$. At $x=-\frac{3}{2}$, the series is $\sum \frac{1}{n}$, the divergent harmonic series (or p-series with $p=1 \leq 1$). At $x=-\frac{1}{2}$, the we have the alternating harmonic series $\sum \frac{(-1)^{n}}{n}$, which converges by the Alternating Series Test since $b_{n}=\left|a_{n}\right|=\frac{1}{n} \downarrow 0$. Hence the interval of convergence is $I=\left(-\frac{3}{2},-\frac{1}{2}\right]$.
[Please turn the page for solutions to Problems 12-15.]

12. - A series $\sum a_{n}$ converges absolutely if and only if the series of absolute values $\sum\left|a_{n}\right|$ converges.

- Accordingly, the series in question converges absolutely via the Integral Test.

$$
\begin{aligned}
\int_{2}^{\infty}(\ln x)^{-4} \frac{1}{x} d x & =\left.\lim _{t \rightarrow \infty}\left(-\frac{1}{3}(\ln x)^{-3}\right)\right|_{2} ^{t} \\
& =\lim _{t \rightarrow \infty}\left(-\frac{1}{3(\ln t)^{3}}+\frac{1}{3(\ln 2)^{3}}\right) \\
& =\frac{1}{3(\ln 2)^{3}}
\end{aligned}
$$

13. (a) We have

$$
\begin{aligned}
\int_{0}^{0.1} e^{-x^{2}} d x & =\int_{0}^{1 / 10} \sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!} d x \\
& =\int_{0}^{1 / 10} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} d x \\
& =\left.\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!}\right)\right|_{0} ^{1 / 10} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{10}\right)^{2 n+1}}{(2 n+1) n!}
\end{aligned}
$$

(b) The third partial sum is $\frac{1}{10}-\frac{1}{3}\left(\frac{1}{10}\right)^{3}+\frac{1}{10}\left(\frac{1}{10}\right)^{5}$ or approximately 0.099668 .
(c) The Alternating Series Estimation Theorem guarantees that the magnitude of the error in this approximation is less than or equal to that of the first neglected term. This corresponds to $n=3$. Therefore, the error satisfies \mid error $\left\lvert\, \leq \frac{10^{-7}}{7(3!)}=\frac{1}{42 \times 10^{7}} \approx 2.38 \times 10^{-9}\right.$.
14. (a) The series $\sum \frac{(-1)^{n}}{n^{3 / 4}}$ converges via the Alternating Series Test since $b_{n}=\left|a_{n}\right|=\frac{1}{n^{3 / 4}} \downarrow 0$.
(b) The series $\sum \frac{n^{2}}{n^{4}-n}$ is asymptotically similar to the convergent p-series $\sum \frac{1}{n^{2}}$ (here $p=2>1$) and thus converges by the Limit Comparison Theorem.
$\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{4}-n}}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-n}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{n^{3}}}=1>0$
15. Computing the Maclaurin series via the definition is straightforward. ("Brute force has a charm all its own.")

$$
\begin{aligned}
f(x) & =\ln (1+8 x) \\
f^{\prime}(x) & =8(1+8 x)^{-1} \\
f^{\prime \prime}(x) & =-8^{2}(1+8 x)^{-2} \\
f^{\prime \prime \prime}(x) & =2 \cdot 8^{3}(1+8 x)^{-3} \\
f^{(4)}(x) & =-6 \cdot 8^{4}(1+8 x)^{-4} \\
& \vdots \\
f^{(n)}(x) & =(-1)^{n-1}(n-1)!\cdot 8^{n}(1+8 x)^{-n}
\end{aligned}
$$

Thus $f^{(n)}(0)=(-1)^{n-1} 8^{n}(n-1)$! for $n \geq 1$ and $f^{(0)}(0)=f(0)=\ln 1=0$.

- Hence
$\ln (1+8 x)=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 8^{n} x^{n}}{n}$.
- As $n \rightarrow \infty$ the Root Test with GFF requires

$$
\sqrt[n]{\left|a_{n}\right|}=\frac{8|x|}{\sqrt[n]{n}} \rightarrow 8|x|<1
$$

or $|x|<\frac{1}{8}$. Thus $R=\frac{1}{8}$. (The Ratio Test gives the same result.)

- Alternatively, manipulate a known geometric series.

Note that $\ln (1+z)$ is an antiderivative of $\frac{1}{1+z}$.

$$
\begin{aligned}
\ln (1+z) & =\int \frac{1}{1+z} d z=\int \frac{1}{1-(-z)} d z \\
& =\int \sum_{n=0}^{\infty}(-z)^{n} d z, \quad \text { if }|-z|<1 \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} z^{n} d z, \quad \text { if }|z|<1 \\
& =C+\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n+1}}{n+1} \\
\ln (1+z) & =C+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{z^{k}}{k} \\
0=\ln (1+0) & =C+\sum^{\infty} 0=C \\
\text { Thus } \ln (1+z) & =\sum_{k=1}^{\infty} \frac{(-1)^{k-1} z^{k}}{k} .
\end{aligned}
$$

We require $|z|<1$. Hence the radius of convergence for this series is $R=1$.

- Now set $z=8 x$. Then
$\ln (1+8 x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}(8 x)^{k}}{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1} 8^{k} x^{k}}{k}$ provided $|z|=|8 x|<1$ or $|x|<\frac{1}{8}$. Thus the radius of convergence of our series is $R=\frac{1}{8}$.

