On the front of the Blue Book, on the Scantron and on this sheet write your Name, your University ID and "Exam 1."

On the front of the Blue Book copy the Grading Grid shown at the right.

Enter your Multiple Choice answers on the Scantron and CIRCLE them on this sheet.

Multiple Choice: (5 points each. No part credit.)

1. Compute: \(\lim_{x \to 3} \frac{x - 5}{x^2 - 25} \)

 a. \(\frac{1}{10} \)

 b. \(\frac{1}{5} \)

 c. 0

 d. 5

 e. Does Not Exist

2. Compute: \(\lim_{x \to 2} \frac{(x + 1)^2 - (x - 1)^2 - 8}{x - 2} \)

 a. 1

 b. 2

 c. 4

 d. 8

 e. Does Not Exist
3. Which of the following is the function whose graph is → → →

![Graph Image]

- **a.** \(f(x) = (x - 2)^3 - 1 \)
- **b.** \(f(x) = (x - 1)^3 + 2 \)
- **c.** \(f(x) = (x + 1)^3 + 2 \)
- **d.** \(f(x) = (x + 1)^3 - 2 \)
- **e.** \(f(x) = (x + 2)^3 + 1 \)

4. A triangle has vertices \(A = (-3, 13), \ B = (2, 1) \) and \(C = (6, 4) \). Find \(\cos \theta \) where \(\theta \) is the angle at vertex \(B \).

- **a.** \(\frac{17}{\sqrt{13} \cdot \sqrt{178}} \)
- **b.** \(\frac{16}{845} \)
- **c.** \(\frac{845}{16} \)
- **d.** \(\frac{16}{65} \)
- **e.** \(\frac{65}{16} \)

5. A wagon is pulled along the ground by exerting a 4 Newton force along the handle which makes a 30° angle with the horizontal. How much work is done in pulling the wagon 5 meters?

- **a.** 10 Joules
- **b.** \(10\sqrt{3} \) Joules
- **c.** 5 Joules
- **d.** \(5\sqrt{3} \) Joules
- **e.** \(20\sqrt{3} \) Joules
6. Find the parametric equations of the line through the points \(A = (-3, 13) \) and \(B = (2, 1) \).
 a. \(x = -3 + 5t, \quad y = 13 - 12t \)
 b. \(x = 5 - 3t, \quad y = -12 + 13t \)
 c. \(x = -3 + 2t, \quad y = 13 + t \)
 d. \(x = 2 - 3t, \quad y = 1 + 13t \)
 e. \(x = 5 + 2t, \quad y = -12 + t \)

7. Which of the following parametric curves is the parabola \(x = 2 + y^2 \) ?
 a. \(x = 2 - t, \quad y = t^2 \)
 b. \(x = t^2, \quad y = 2 + t \)
 c. \(x = 2 + t, \quad y = t^2 \)
 d. \(x = t, \quad y = 2 + t^2 \)
 e. \(x = 2 + t^2, \quad y = t \)

8. Near the point \(x = 3 \), the graph of the function \(f(x) = \frac{x^2 - 5x + 6}{x^2 - 6x + 9} \) looks qualitatively like
 a. [Graph A]
 b. [Graph B]
 c. [Graph C]
 d. [Graph D]
9. (10 points) State the meaning of the equation \(\lim_{x \to 5} (3x - 4) = 11 \) and then prove it. Be sure to distinguish between your Definition, your Scratch work and your Proof.

10. (10 points) Find an interval of width 1 in which the equation \(x^3 - x = 1 \) is guaranteed to have a solution. Be sure to name the theorem you use and explain why it applies.

11. (20 points) A body is moving so that its position at time \(t \) is \(x(t) = \sqrt{t + 2} \).

 a. What is the average velocity between \(t = 2 \) and \(t = 7 \) ?

 b. What is the average velocity between \(t = 2 \) and \(t = 2 + h \) ?

 c. What is the instantaneous velocity at \(t = 2 \) ?

12. (10 points) Compute the derivative of \(f(x) = \frac{1}{x} \) from the limit definition of the derivative.

 HINTS: \(\frac{a-b}{c} = \frac{1}{c} (a-b) \) Put everything over a common denominator.

13. (10 points) Find the horizontal asymptotes as \(x \to \infty \) and as \(x \to -\infty \) of the function \(f(x) = \frac{\sqrt{x^2 + 4x} - \sqrt{x^2 + 2x}}{2} \). Be sure to state your two answers in concluding sentences, identifying which asymptote is which.