Multiple Choice: (6 points each. No part credit.)

1. Find the absolute minimum and absolute maximum values of the function $f(x) = x^3 - \frac{9}{2}x^2 + 14$ on the interval $[-2, 4]$.

 a. minimum $= -12$, maximum $= 6$

 b. minimum $= -12$, maximum $= 14$ correctchoice

 c. minimum $= -12$, maximum $= \frac{1}{2}$

 d. minimum $= \frac{1}{2}$, maximum $= 14$

 e. minimum $= \frac{1}{2}$, maximum $= 6$

 $f(x) = x^3 - \frac{9}{2}x^2 + 14$ \quad $f'(x) = 3x^2 - 9x = 3x(x - 3) = 0$

 critical points at $x = 0, 3$ \quad endpoints at $x = -2, 4$

 $f(-2) = -12$ \quad $f(0) = 14$ \quad $f(3) = \frac{1}{2}$ \quad $f(4) = 6$ minimum $= -12$, maximum $= 14$

2. Where is $f(x) = \frac{1}{4}x^4 - 6x^2$ concave up?

 a. $x < -2$ or $x > 2$ correctchoice

 b. $-2 < x < 2$

 c. $x < -\sqrt{12}$ or $0 < x < \sqrt{12}$

 d. $-\sqrt{12} < x < 0$ or $x > \sqrt{12}$

 e. $-\sqrt{12} < x < \sqrt{12}$

 $f'(x) = x^3 - 12x$ \quad $f''(x) = 3x^2 - 12 = 3(x - 2)(x + 2) > 0$ for $x < -2$ or $x > 2$.
3. At the right is the graph of \(y = f'(x) \).
 Where is \(f(x) \) increasing?

 \[\begin{array}{c}
 \text{a. } [0,2.5] \text{ and } [6.5,10] \\
 \text{b. } [0,1] \text{ and } [4,8] \\
 \text{c. } [2.5,6.5] \\
 \text{d. } [1,4] \text{ and } [8,10] \text{ correct choice} \\
 \text{e. } [4.5,10] \\
 \end{array} \]

 \(f(x) \) is increasing where \(f'(x) > 0 \), i.e. on \([1,4] \) and \([8,10] \).

4. The graph of \(y = f'(x) \) appears in the previous problem. Where does \(f(x) \) have a local maximum?

 \[\begin{array}{c}
 \text{a. } 1 \text{ and } 8 \text{ only} \\
 \text{b. } 2.5 \text{ only} \\
 \text{c. } 4 \text{ only correct choice} \\
 \text{d. } 1, \ 4 \text{ and } 8 \text{ only} \\
 \text{e. } 2.5 \text{ and } 10 \text{ only} \\
 \end{array} \]

 \(f(x) \) has a local maximum where \(f'(x) \) switches from positive to negative, i.e. at \(x = 4 \).
5. Find all critical points of the function \(f(x) = \sin x + \cos x \) on the interval \([0, 2\pi]\).

 a. \(\frac{\pi}{4} \) and \(\frac{5\pi}{4} \) only

 b. \(\frac{\pi}{4} \) only

 c. \(\frac{5\pi}{4} \) only

 d. \(\frac{3\pi}{4} \) and \(\frac{7\pi}{4} \) only

 e. \(\frac{3\pi}{4} \) only

\[
f'(x) = \cos x - \sin x = 0 \implies \sin x = \cos x \implies \tan x = 1 \implies x = \frac{\pi}{4} + n\pi
\]

6. A rocket is launched at rest from ground level. Its vertical acceleration is \(a(t) = 64\pi \sin(2t) - 32 \) ft/sec\(^2\) where \(t \) is in sec. What is its velocity at \(t = \frac{\pi}{2} \) sec?

 a. 16\pi

 b. 32\pi

 c. 48\pi correctchoice

 d. 64\pi

 e. 72\pi

\[
v(t) = -32\pi \cos(2t) - 32t + C \quad v(0) = -32\pi + C = 0 \quad C = 32\pi \quad v(t) = -32\pi \cos(2t) - 32t + 32\pi
\]

\[
v\left(\frac{\pi}{2}\right) = -32\pi \cos\left(2 \cdot \frac{\pi}{2}\right) - 32 \cdot \frac{\pi}{2} + 32\pi = 32\pi - 16\pi + 32\pi = 48\pi
\]

7. Compute \(\int_0^1 e^x \, dx \).

 a. \(e^2 \)

 b. \(\frac{e^2}{2} \)

 c. \(\frac{e^2}{2} - e \)

 d. \(e \)

 e. \(e - 1 \) correctchoice

\[
\int_0^1 e^x \, dx = [e^x]_0^1 = e^1 - e^0 = e - 1
\]
8. Find the area under \(y = x^3 \) between \(x = 0 \) and \(x = 4 \).
 a. 8
 b. 16
 c. 32
 d. 64 correctchoice
 e. 128
 \[A = \int_0^4 x^3 \, dx = \left[\frac{x^4}{4} \right]_0^4 = 4^3 = 64 \]

9. Compute \(\int_0^1 x^2 \sin(4x^3) \, dx \).
 a. \(12 - 12 \cos 4 \)
 b. \(12 \cos 1 - 12 \)
 c. \(\frac{1}{12} - \frac{1}{12} \cos 4 \) correctchoice
 d. \(\frac{1}{12} \cos 4 - \frac{1}{12} \)
 e. \(\frac{1}{12} \cos 1 - \frac{1}{12} \)
 \[u = 4x^3 \quad du = 12x^2 \, dx \quad \frac{1}{12} \, du = x^2 \, dx \]
 \[\int_0^1 x^2 \sin(4x^3) \, dx = \frac{1}{12} \int_0^4 \sin u \, du = \left[\frac{-1}{12} \cos u \right]_0^4 = \frac{-1}{12} \cos 4 + \frac{1}{12} \cos 0 = \frac{1}{12} - \frac{1}{12} \cos 4 \]

10. Compute \(\int_1^e \frac{(\ln x)^2}{x} \, dx \).
 a. \(\frac{1}{3} \) correctchoice
 b. 2
 c. \(\frac{e^3 - 1}{3} \)
 d. \(2e - 2 \)
 e. \(\frac{2e - 2}{3} \)
 \[u = \ln x \quad du = \frac{1}{x} \, dx \quad \int_1^e \frac{(\ln x)^2}{x} \, dx = \int_0^1 u^2 \, du = \left. \frac{u^3}{3} \right|_0^1 = \frac{1}{3} \]
Start each problem on a new page of the Blue Book. Number the problem. Show all work.

11. (15 points) A church window will have the shape of a rectangle with an isosceles right triangle on top. The area of the window is to be \(A = 1 + 2\sqrt{2} \). Since the window frame will be gold plated, we want to minimize the perimeter of the window. What are the dimensions of the rectangular part of the window which minimize the perimeter of the whole window?

You must explain your solution using sentences.

HINT: If \(a \) is the height of the rectangle and \(b \) is its width, then \(\frac{b}{\sqrt{2}} \) is the length of each slanted side of the triangular top.

Let \(a \) be the height and \(b \) be the width of the rectangle. The area is constrained to be \(A = ab + \frac{b^2}{4} = 1 + 2\sqrt{2} \) and we wish to minimize the perimeter \(P = 2a + b + 2b/\sqrt{2} \).

We solve the constraint for \(a \): \(a = \frac{1 + 2\sqrt{2}}{b} - \frac{b}{4} \) So the perimeter becomes:

\[
P = 2\left(\frac{1 + 2\sqrt{2}}{b} - \frac{b}{4} \right) + b + \sqrt{2}b = \frac{2 + 4\sqrt{2}}{b} - \frac{b}{2} + b + \sqrt{2}b = \frac{2 + 4\sqrt{2}}{b} + \left(\frac{1}{2} + \sqrt{2} \right)b
\]

We set the derivative equal to zero and solve for \(b \):

\[
P' = -\frac{2 + 4\sqrt{2}}{b^2} + \left(\frac{1}{2} + \sqrt{2} \right) = 0 \implies \left(\frac{1}{2} + \sqrt{2} \right) = \frac{2 + 4\sqrt{2}}{b^2}
\]

\[
\Rightarrow b^2 = \frac{2 + 4\sqrt{2}}{\frac{1}{2} + \sqrt{2}} = \frac{4 + 8\sqrt{2}}{1 + 2\sqrt{2}} = 4
\]

So \(b = 2 \) and \(a = \frac{1 + 2\sqrt{2}}{2} - \frac{2}{4} = \sqrt{2} \).
12. (10 points) Let P_n denote the statement: \[\sum_{i=1}^{n} 3^i = \frac{3^{n+1} - 3}{2} \]

Use mathematical induction to prove P_n is true for all integers $n \geq 1$.

Initialization Step:

P_1 means $\sum_{i=1}^{1} 3^i = \frac{3^{1+1} - 3}{2} = \frac{9 - 3}{2} = 3$ and so P_1 is true.

Induction Step:

P_k means $\sum_{i=1}^{k} 3^i = \frac{3^{k+1} - 3}{2} \quad \text{and} \quad P_{k+1}$ means $\sum_{i=1}^{k+1} 3^i = \frac{3^{k+2} - 3}{2}$.

We assume P_k is true. Then

\[
\sum_{i=1}^{k+1} 3^i = \left(\sum_{i=1}^{k} 3^i \right) + 3^{k+1} = \left(\frac{3^{k+1} - 3}{2} \right) + 3^{k+1} = \frac{3^{k+2} - 3 + 2 \cdot 3^{k+1}}{2} = \frac{3 \cdot 3^{k+1} - 3}{2} = \frac{3^{k+2} - 3}{2}.
\]

So P_{k+1} is true.

We conclude P_n is true for all integers $n \geq 1$.

13. (15 points) Use the Method of Riemann Sums with Right Endpoints to compute the integral $\int_{1}^{4} (x - 1)^2 \, dx$. Use the F.T.C. only to check your answer.

Hints:

\[
\sum_{i=1}^{n} 1 = n, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]

\[
\Delta x = \frac{4 - 1}{n} = \frac{3}{n}, \quad x_i = 1 + i\Delta x = 1 + \frac{3i}{n}, \quad f(x) = (x - 1)^2, \quad f(x_i) = \left(1 + \frac{3i}{n} - 1\right)^2 = \frac{9i^2}{n^2},
\]

\[
\int_{1}^{4} (x - 1)^2 \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\Delta x = \lim_{n \to \infty} \frac{9i^2}{n^2} \frac{3}{n} = \lim_{n \to \infty} \frac{27}{n^3} \sum_{i=1}^{n} i^2 = \lim_{n \to \infty} \frac{27}{n^3} \frac{n(n+1)(2n+1)}{6} = \lim_{n \to \infty} \frac{9}{2} \frac{(n+1)(2n+1)}{n^2} = \lim_{n \to \infty} \frac{9}{2} \left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) = 9.
\]

Check:

\[
\int_{1}^{4} (x - 1)^2 \, dx = \left[\frac{(x - 1)^3}{3} \right]_{1}^{4} = \frac{3^3}{3} - \frac{0}{3} = 9.
\]