Name	ID	1-10	140
		11	/15
MATH 172 EXAM 1	Fall 1998	12	/15
Section 502	P. Yasskin		
		13	/15
		14	/15

1. Evaluate $\int_{0}^{2} \sqrt{4-x^{2}}+1 d x$ by interpretating it as an area.
a. $2+2 \pi$
b. $1+\pi$
c. $1+2 \pi$
d. $\pi-1$
e. $2+\pi$
2. Approximate the area between the curves $y=x$ and $y=1+x^{2}$ for $0 \leq x \leq 6$ using 3 rectangles with equal widths and with heights given by the function values at the left endpoints.
a. 17
b. 29
c. 34
d. 46
e. 58
3. A girl walks(runs) in a straight line with acceleration $a(t)=4 t+\sin t$. If her initial velocity is $v(0)=3$, find her velocity at $t=2$.
a. $12-\cos 2$
b. $12+\cos 2$
c. $10-\cos 2$
d. $10+\cos 2$
e. $8+\sin 2$
4. Compute: $\int_{0}^{1} x^{3 / 7} d x$
a. $-\frac{7}{4}$
b. $-\frac{4}{7}$
c. $\frac{7}{3}$
d. $\frac{3}{7}$
e. $\frac{7}{10}$
5. Compute: $\int \sqrt{x}\left(x^{2}-\frac{1}{x}\right) d x$
a. $\frac{2 x^{7 / 2}}{7}+\frac{2 x^{-3 / 2}}{3}+C$
b. $\frac{2 x^{7 / 2}}{7}-2 x^{1 / 2}+C$
c. $\frac{2 x^{37 / 2}}{3}+\frac{2 x^{-3 / 2}}{3}+C$
d. $\sqrt{x}\left(\frac{x^{3}}{3}-\ln x\right)+\frac{2 x^{3 / 2}}{3}\left(x^{2}-\ln x\right)+C$
e. $\frac{2 x^{3 / 2}}{3}\left(\frac{x^{3}}{3}-\ln x\right)+C$
6. Compute: $\int_{0}^{2} x \sqrt{4-x^{2}} d x$
a. $\frac{2 \sqrt{2}}{3}$
b. $\frac{8}{3}$
c. 24
d. $\frac{32}{3}$
e. 6
7. Compute: $\quad \int_{0}^{1 / 4} \sin (\pi t) d t$
a. $\frac{1}{\pi(\sqrt{2}-1)}$
b. $\frac{1}{\pi(1-\sqrt{2})}$
c. $\frac{1}{\pi \sqrt{2}}-\frac{1}{\pi}$
d. $\frac{1}{\pi}-\frac{1}{\pi \sqrt{2}}$
e. $-\frac{1}{\pi \sqrt{2}}$
8. The mass density of a 3 cm bar is $\rho=1+x^{2} \frac{\mathrm{gm}}{\mathrm{cm}}$ for $0 \leq x \leq 3$. Find the total mass of the bar.
a. 4 gm
b. 10 gm
c. 12 gm
d. 18 gm
e. 30 gm
9. The mass density of a 3 cm bar is $\rho=1+x^{2} \frac{\mathrm{gm}}{\mathrm{cm}}$ for $0 \leq x \leq 3$. Find the average density of the bar.
a. $4 \frac{\mathrm{gm}}{\mathrm{cm}}$
b. $10 \frac{\mathrm{gm}}{\mathrm{cm}}$
c. $12 \frac{\mathrm{gm}}{\mathrm{cm}}$
d. $\frac{10}{3} \frac{\mathrm{gm}}{\mathrm{cm}}$
e. $\frac{13}{4} \frac{\mathrm{gm}}{\mathrm{Cm}}$
10. The mass density of a 3 cm bar is $\rho=1+x^{2} \frac{\mathrm{gm}}{\mathrm{cm}}$ for $0 \leq x \leq 3$. Find the x-coordinate of the center of mass of the bar.
(If you prefer, you may think of this as a plate of uniform density $\rho=1$ between $y=1+x^{2}$ and the x-axis for $0 \leq x \leq 3$.)
a. $\frac{3}{2}$
b. 2
c. $\frac{7}{3}$
d. $\frac{33}{16}$
e. $\frac{99}{4}$
11.

(15 points) The area between the curve $x=\sqrt{16-y^{4}}$ and the y-axis is rotated about the y-axis. Find the volume of the solid swept out.
12.

(15 points) The area between the curve $y=4 x-x^{2}$ and the x-axis is rotated about the y-axis. Find the volume of the solid swept out.
13. (15 points) Find the arc length of the parametric curve $x=\frac{1}{2} t^{6}, y=t^{4}$ between $t=0$ and $t=1$.
HINT: $\quad \sqrt{t^{2 a}+t^{2 a+b}}=t^{a} \sqrt{1+t^{b}}$
14.

(15 points) A bowl is formed by rotating the curve $y=x^{2}$ for $0 \leq x \leq 2$ about the y-axis. This bowl is full of water. How much work is done in pumping the water out the top of the bowl? Leave the density as ρ and the acceleration of gravity as g.

