Name	ID		1-10	/40
			11	/15
MATH 172	EXAM 1	Fall 1998	12	/15
Section 502		P. Yasskin		
			13	/15
· · · · · · · · · · · · · · · · · · ·			14	/15

Multiple Choice: (4 points each)

- 1. Evaluate $\int_{0}^{2} \sqrt{4 x^{2}} + 1 \, dx$ by interpretating it as an area. a. $2 + 2\pi$ b. $1 + \pi$ c. $1 + 2\pi$ d. $\pi - 1$ e. $2 + \pi$
- **2**. Approximate the area between the curves y = x and $y = 1 + x^2$ for $0 \le x \le 6$ using 3 rectangles with equal widths and with heights given by the function values at the **left** endpoints.
 - **a**. 17
 - **b**. 29
 - **c**. 34
 - **d**. 46
 - **e**. 58

- **3**. A girl walks(runs) in a straight line with acceleration $a(t) = 4t + \sin t$. If her initial velocity is v(0) = 3, find her velocity at t = 2.
 - **a**. $12 \cos 2$
 - **b.** $12 + \cos 2$
 - $\textbf{c.} \quad 10-\cos 2$
 - **d.** $10 + \cos 2$
 - **e**. $8 + \sin 2$

5. Compute:
$$\int \sqrt{x} \left(x^2 - \frac{1}{x}\right) dx$$

a. $\frac{2x^{7/2}}{7} + \frac{2x^{-3/2}}{3} + C$
b. $\frac{2x^{7/2}}{7} - 2x^{1/2} + C$
c. $\frac{2x^{37/2}}{3} + \frac{2x^{-3/2}}{3} + C$
d. $\sqrt{x} \left(\frac{x^3}{3} - \ln x\right) + \frac{2x^{3/2}}{3}(x^2 - \ln x) + C$
e. $\frac{2x^{3/2}}{3} \left(\frac{x^3}{3} - \ln x\right) + C$

6. Compute:
$$\int_{0}^{2} x\sqrt{4-x^{2}} dx$$

a. $\frac{2\sqrt{2}}{3}$
b. $\frac{8}{3}$
c. 24
d. $\frac{32}{3}$
e. 6

- **8**. The mass density of a 3 cm bar is $\rho = 1 + x^2 \frac{\text{gm}}{\text{cm}}$ for $0 \le x \le 3$. Find the total mass of the bar.
 - **a**. 4 gm
 - **b**. 10 gm
 - **c**. 12 gm
 - **d**. 18 gm
 - **e**. 30 gm
- **9**. The mass density of a 3 cm bar is $\rho = 1 + x^2 \frac{\text{gm}}{\text{cm}}$ for $0 \le x \le 3$. Find the average density of the bar.
 - **a.** 4 $\frac{gm}{cm}$ **b.** 10 $\frac{gm}{cm}$ **c.** 12 $\frac{gm}{cm}$ **d.** $\frac{10}{3} \frac{gm}{cm}$ **e.** $\frac{13}{4} \frac{gm}{cm}$
- **10**. The mass density of a 3 cm bar is $\rho = 1 + x^2 \frac{\text{gm}}{\text{cm}}$ for $0 \le x \le 3$. Find the *x*-coordinate of the center of mass of the bar. (If you prefer, you may think of this as a plate of uniform density $\rho = 1$ between $y = 1 + x^2$ and the x-axis for $0 \le x \le 3$.)

 - **a.** $\frac{3}{2}$ **b.** 2 **c.** $\frac{7}{3}$ **d.** $\frac{33}{16}$ **e.** $\frac{99}{4}$

(15 points) The area between the curve $x = \sqrt{16 - y^4}$ and the *y*-axis is rotated about the *y*-axis. Find the volume of the solid swept out.

(15 points) The area between the curve $y = 4x - x^2$ and the *x*-axis is rotated about the *y*-axis. Find the volume of the solid swept out. **13.** (15 points) Find the arc length of the parametric curve $x = \frac{1}{2}t^6$, $y = t^4$ between t = 0 and t = 1. HINT: $\sqrt{t^{2a} + t^{2a+b}} = t^a \sqrt{1 + t^b}$

14.

(15 points) A bowl is formed by rotating the curve $y = x^2$ for $0 \le x \le 2$ about the *y*-axis. This bowl is full of water. How much work is done in pumping the water out the top of the bowl? Leave the density as ρ and the acceleration of gravity as *g*.