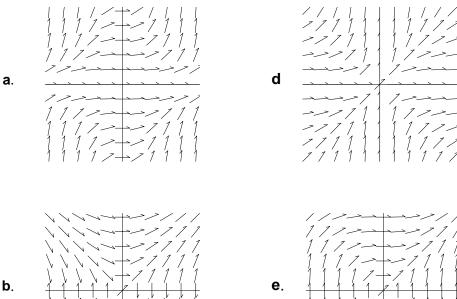
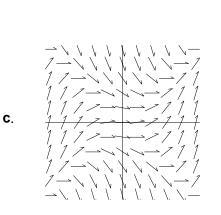
Name	ID)	1-15	/120
			16	/20
MATH 172	FINAL EXAM	Fall 1998	17	/20
Section 502		P. Yasskin		
			18	/20
Multiple Choice: (8 points each)			19	/20

- **1.** Compute $\int_{0}^{\sqrt{\pi}} x \sin(x^2) dx$ **a.** $-\frac{1}{2}$ **b.** 0 **c.** $\frac{1}{2}$ **d.** 1 **e.** 2
- 2. Compute $\int_{0}^{1} x^{2} e^{x} dx$ a. -3eb. -3e+2c. -3e-2d. ee. e-2
- **3**. Find the average value of the function $f(x) = 3x^2 + 1$ for $1 \le x \le 3$.
 - **a**. 13
 - **b**. 14
 - **c**. 15
 - **d**. 16
 - **e**. 17

4. Compute $\int \frac{x^2}{(1-x^2)^{3/2}} dx$ Hints: $\sin^2\theta + \cos^2\theta = 1$ $\tan^2\theta + 1 = \sec^2\theta$ **a.** $\frac{x}{\sqrt{1-x^2}} - \arctan x$ **b**. $\frac{x}{\sqrt{1-x^2}}$ + arctan x **c.** $\frac{x}{\sqrt{1-x^2}}$ - $\arcsin x$ **d**. $\frac{x}{\sqrt{1-x^2}} + \arcsin x$ **e.** $\frac{x}{\sqrt{1-x^2}} + x$


- **5**. Find the area between the curves $y = x^2$ and $y = x^3$ for $0 \le x \le 1$. **a**. $\frac{1}{24}$ **b**. $\frac{1}{12}$ **c**. $\frac{1}{7}$ **d**. $\frac{1}{6}$ **e**. 1
- **6**. The area between the curves $y = x^2$ and $y = x^3$ for $0 \le x \le 1$ is rotated around the x-axis. Find the volume swept out.

 - **a**. $\frac{\pi}{5}$ **b**. $\frac{\pi}{10}$ **c**. $\frac{\pi}{20}$ **d**. $\frac{2\pi}{35}$ **e**. $\frac{4\pi}{35}$


- **7**. Find the total mass of a bar whose linear density is 6 cm $\rho = (1 + x) \text{ g/cm}$ where *x* is the distance from one end in cm.
 - **a**. $\frac{7}{6}$ g
 - **b**. 4 g
 - **c**. 6 g
 - **d**. 7 g
 - **e**. 24 g

8. Which of the following is the direction field for the differential equation

$$\frac{dy}{dx} = \frac{x^2}{v^2} ?$$

b.

3

- 9. Compute $\int_{1}^{\infty} \frac{1}{1+x^2} dx$ **a**. $\frac{\pi}{4}$ **b**. $\frac{\pi}{2}$ **c**. $\frac{3\pi}{4}$

 - d. Convergent but none of the above
 - e. Divergent

10. Compute
$$\sum_{n=1}^{\infty} \frac{1}{1+n^2} =$$
a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. $\frac{3\pi}{4}$
d. Convergent but none of the above

e. Divergent

11. The series

$$\frac{n}{1+n^2}$$
 is

- $\sum_{n=1}^{\infty} (-1)^n 1$ a. absolutely convergent
- b. conditionally convergent
- c. divergent
- d. none of these

12. Find the radius of convergence of the series

$$\sum_{n=2}^{\infty} \frac{(x-3)^n}{2^n n^2}.$$

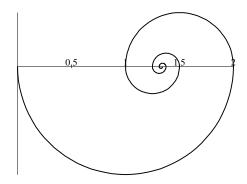
- **a**. 0
- **b**. 1
- **c**. 2
- **d**. 3
- **e**. 4

13. The vectors $\vec{a} = (2, -1, 4)$ and $\vec{b} = (3, 2, -1)$ are

- a. parallel
- b. perpendicular
- c. neither

14. Find the area of the parallelogram whose edges are $\vec{a} = (1,2,3)$ and

- $\vec{b} = (3, 2, 1).$
- **a**. $2\sqrt{2}$
- **b**. $4\sqrt{2}$
- **c**. $4\sqrt{3}$
- **d**. $2\sqrt{6}$
- **e**. $4\sqrt{6}$
- **15**. A baseball is thrown straight North initially at 45° above horizontal and follows a parabolic path, up and back down. At the top of the trajectory, in what direction does the unit binormal \hat{B} point?
 - a. West and horizontal
 - b. West and below horizontal
 - c. Straight down
 - d. East and below horizontal
 - e. East and horizontal


Work-out Problems: (20 points each)

16. Solve the differential equation $\frac{dy}{dx} + 2xy = e^{-x^2}$ with the initial condition y(1) = 0.

17. Find the point where the line $\begin{cases} x = -2 + t \\ y = 1 + 2t \\ z = 3 - 2t \end{cases}$ intersects the plane 2x - 3y + z = -16.

The spiral at the right is made from an infinite number of semicircles whose centers are all on the *x*-axis. The radius of each semicircle is half of the radius of the previous semicircle.

18.

a. Consider the infinite sequence of points where the spiral crosses the *x*-axis. What is the *x*-coordinate of the limit of this sequence?

b. What is the total length of the spiral (with an infinite number of semicircles)? Or, is the length infinite?

- **19.** Consider the twisted cubic curve $\vec{r}(t) = (6t, 3t^2, t^3)$ for $0 \le t \le 2$.
 - **a**. Find the arc length of the curve between t = 0 and t = 2.

b. Find the unit binormal vector \hat{B} .