Name		_ ID	1-10	/60
			11	/10
MATH 172	EXAM 2	Spring 1999	12	/10
Section 504		P. Yasskin		
			13	/10
Multiple Choice: (6 points each)			14	/10

1. Approximate $\int_{1}^{7} (x^2 + 2x) dx$ by using the trapezoid rule with 3 intervals. a. 83 b. 116 c. 162 d. 166 e. 232

- 2. Given that the partial fraction expansion for $\frac{x^2 1}{x^4 + x^2}$ is $\frac{x^2 1}{x^4 + x^2} = \frac{2}{x^2 + 1} \frac{1}{x^2}$, compute $\int \frac{x^2 - 1}{x^4 + x^2} dx$. a. $2 \tan^{-1}x + \frac{1}{x} + C$ b. $\tan^{-1}(\frac{x}{2}) + \frac{1}{x} + C$ c. $\tan^{-1}(\frac{x}{2}) - \frac{1}{x} + C$
 - **d.** $\frac{-4x}{(x^2+1)^2} + \frac{2}{x^3} + C$
 - e. None of These

- 3. Compute: $\int_{1}^{2} \frac{1}{\sqrt{x^2 1}} dx$ **a**. $\sin^{-1}(2) - \frac{\pi}{2}$ **b.** $\frac{\pi}{2} - \sin^{-1}(2)$ **c.** $\bar{\ln(2+\sqrt{3})}$ **d.** $\ln\left(2 - \sqrt{3}\right)$ **e.** $\ln\left(\frac{\sec 2 + \tan 2}{\sec 1 + \tan 1}\right)$

4. The improper integral

$$\int_{1}^{2} \frac{1}{(x-1)^2} dx$$

- **a**. diverges to $-\infty$
- b. converges to a negative number
- **c**. converges to 0
- d. converges to a positive number
- **e**. diverges to $+\infty$

5. The improper integral

$$\int_{2}^{\infty} \frac{1}{x^2 + 1 + \sin x} \, dx$$

- **a**. diverges to $-\infty$
- **b**. converges and is $<\frac{1}{2}$
- **c**. converges and is $=\frac{1}{2}$ **d**. converges and is $>\frac{1}{2}$
- **e**. diverges to $+\infty$

6. Which of the following is the direction field of the differential equation

- $\frac{dy}{dx} = xy^2$ with the initial condition $y(1) = \frac{2}{5}$. 7. Solve the initial value problem Then find y(2). **a.** 0 **b.** $\frac{1}{5}$ **c.** $\frac{4}{5}$ **d.** $\frac{7}{10}$

 - **e**. 1

8. The mass density of a 3 ft bar is $\rho = 1 + x^2 \frac{\text{lb}}{\text{ft}}$ for $0 \le x \le 3$. Find the center of mass of the bar.

a.
$$\bar{x} = 12$$

b. $\bar{x} = \frac{16}{33}$
c. $\bar{x} = \frac{33}{16}$
d. $\bar{x} = \frac{4}{99}$
e. $\bar{x} = \frac{99}{4}$

- **9**. Find the arc length of the parametric curve $x = 2t^2$ and $y = t^3 + 3$ between t = 0 and t = 1.

 - a. $\frac{61}{27}$ b. $\frac{125}{9}$ c. $\frac{125}{27}$ d. $\frac{122}{3}$ e. $\frac{250}{3}$

10. The curve $y = x^3$ for $0 \le x \le 2$ is rotated about the *x*-axis. The area of the resulting surface may be computed from the integral

a.
$$\int_{0}^{2} \pi x \sqrt{1 + 9x^{4}} dx$$

b.
$$\int_{0}^{2} 2\pi x^{3} \sqrt{1 + 9x^{4}} dx$$

c.
$$\int_{0}^{2} 2\pi x \sqrt{1 + x^{6}} dx$$

d.
$$\int_{0}^{2} \pi x^{3} \sqrt{1 + x^{6}} dx$$

e.
$$\int_{0}^{2} 2\pi x \sqrt{1 + 9x^{4}} dx$$

11. (10 points) Find the partial fraction expansion for $\frac{2x^2 - x + 2}{x^3 + x}$. (Do not integrate. HINT: Try x = 0, 1, -1.)

12. (10 points) Compute: $\int \frac{1}{(1-x^2)^{3/2}} dx.$

13. (10 points) Solve the initial value problem $\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{3x^2}{1+x^2}$ with the initial condition y(1) = 2.

14. (10 points) A nuclear power plant went on line at the beginning of the year 1980. It has produced isotope *X* at the rate of $10 \frac{\text{kg}}{\text{yr}}$ and the half-life of *X* is 20 yr. (So its decay constant is $k = \frac{\ln 2}{20}$.) The plant stores all of the isotope *X* it produces. If there was no isotope *X* at the beginning of 1980, how much isotope *X* will there be at the beginning of the year 2000? (6 points for the equations.)