Name		ID	1-10	160
	EXAM 2		11	/10
MATH 172		Spring 1999	12	/10
Section 504		P. Yasskin		
			13	/10
Multiple Choice: (6 points each)			14	/10

1. Approximate $\int_{1}^{7}\left(x^{2}+2 x\right) d x$ by using the trapezoid rule with 3 intervals.
a. 83
b. 116
c. 162
d. 166
e. 232
2. Given that the partial fraction expansion for $\frac{x^{2}-1}{x^{4}+x^{2}}$ is $\frac{x^{2}-1}{x^{4}+x^{2}}=\frac{2}{x^{2}+1}-\frac{1}{x^{2}}$, compute $\int \frac{x^{2}-1}{x^{4}+x^{2}} d x$.
a. $2 \tan ^{-1} x+\frac{1}{x}+C$
b. $\tan ^{-1}\left(\frac{x}{2}\right)+\frac{1}{x}+C$
c. $\tan ^{-1}\left(\frac{x}{2}\right)-\frac{1}{x}+C$
d. $\frac{-4 x}{\left(x^{2}+1\right)^{2}}+\frac{2}{x^{3}}+C$
e. None of These
3. Compute: $\quad \int_{1}^{2} \frac{1}{\sqrt{x^{2}-1}} d x$
a. $\sin ^{-1}(2)-\frac{\pi}{2}$
b. $\frac{\pi}{2}-\sin ^{-1}(2)$
c. $\ln (2+\sqrt{3})$
d. $\ln (2-\sqrt{3})$
e. $\ln \left(\frac{\sec 2+\tan 2}{\sec 1+\tan 1}\right)$
4. The improper integral $\int_{1}^{2} \frac{1}{(x-1)^{2}} d x$
a. diverges to $-\infty$
b. converges to a negative number
c. converges to 0
d. converges to a positive number
e. diverges to $+\infty$
5. The improper integral $\int_{2}^{\infty} \frac{1}{x^{2}+1+\sin x} d x$
a. diverges to $-\infty$
b. converges and is $<\frac{1}{2}$
c. converges and is $=\frac{1}{2}$
d. converges and is $>\frac{1}{2}$
e. diverges to $+\infty$
6. Which of the following is the direction field of the differential equation $\frac{d y}{d x}=x y^{2}$?
a.

b.

e.
d.

c.

7. Solve the initial value problem $\quad \frac{d y}{d x}=x y^{2} \quad$ with the initial condition $\quad y(1)=\frac{2}{5}$. Then find $y(2)$.
a. 0
b. $\frac{1}{5}$
c. $\frac{4}{5}$
d. $\frac{7}{10}$
e. 1
8. The mass density of a 3 ft bar is $\rho=1+x^{2} \frac{\mathrm{lb}}{\mathrm{ft}}$ for $0 \leq x \leq 3$. Find the center of mass of the bar.
a. $\bar{x}=12$
b. $\bar{x}=\frac{16}{33}$
c. $\bar{x}=\frac{33}{16}$
d. $\bar{x}=\frac{4}{99}$
e. $\bar{x}=\frac{99}{4}$
9. Find the arc length of the parametric curve $x=2 t^{2}$ and $y=t^{3}+3$ between $t=0$ and $t=1$.
a. $\frac{61}{27}$
b. $\frac{125}{9}$
c. $\frac{125}{27}$
d. $\frac{122}{3}$
e. $\frac{250}{3}$
10. The curve $y=x^{3}$ for $0 \leq x \leq 2$ is rotated about the x-axis. The area of the resulting surface may be computed from the integral
a. $\int_{0}^{2} \pi x \sqrt{1+9 x^{4}} d x$
b. $\int_{0}^{2} 2 \pi x^{3} \sqrt{1+9 x^{4}} d x$
c. $\int_{0}^{2} 2 \pi x \sqrt{1+x^{6}} d x$
d. $\int_{0}^{2} \pi x^{3} \sqrt{1+x^{6}} d x$
e. $\int_{0}^{2} 2 \pi x \sqrt{1+9 x^{4}} d x$
11. (10 points) Find the partial fraction expansion for $\frac{2 x^{2}-x+2}{x^{3}+x}$. (Do not integrate. HINT: Try $x=0,1,-1$.)
12. (10 points) Compute: $\int \frac{1}{\left(1-x^{2}\right)^{3 / 2}} d x$.
13. (10 points) Solve the initial value problem $\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{3 x^{2}}{1+x^{2}} \quad$ with the initial condition $\quad y(1)=2$.
14. (10 points) A nuclear power plant went on line at the beginning of the year 1980. It has produced isotope X at the rate of $10 \frac{\mathrm{~kg}}{\mathrm{yr}}$ and the half-life of X is 20 yr . (So its decay constant is $k=\frac{\ln 2}{20}$.) The plant stores all of the isotope X it produces. If there was no isotope X at the beginning of 1980, how much isotope X will there be at the beginning of the year 2000? (6 points for the equations.)
