Name_____ ID____

MATH 172

Section 504

EXAM 3

Spring 1999

P. Yasskin

1-10	/60
11	/25
12	/15

Multiple Choice: (6 points each)

- 1. Compute $\lim_{n\to\infty} \frac{\ln n}{n}$
 - **a**. −∞
 - **b**. -1
 - **c**. 0
 - **d**. *e*
 - **e**. ∞
- 2. The series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is
 - a. Divergent by the n^{th} Term Divergence Test
 - b. Divergent by the Integral Test
 - c. Convergent by the Integral Test
 - d. Divergent by the Ratio Test
 - e. Convergent by the Ratio Test
- **3**. A convergent sequence is recursively defined by $a_1 = 1$ and $a_{n+1} = \frac{3 a_n}{2 + a_n}$. Find $\lim a_n$.
 - **a**. $\frac{19}{24}$
 - **b.** $\frac{\sqrt[24]{21}-3}{2}$
 - c. $\frac{\pi}{4}$
 - **d**. $\frac{3}{2}$
 - **e**. $\frac{2}{3}$

4. The sum of the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^{n+1}}{4^n}$$
 is

- a. nonexistant since its partial sums oscillate
- **b**. $-\frac{3}{4}$
- **c**. $\frac{9}{7}$
- ${f d}$. nonexistant by the $n^{
 m th}$ Term Divergence Test
- **e**. $\frac{3}{16}$

5. Compute
$$\sum_{k=2}^{\infty} \frac{3}{(n-1)(n+1)}$$
. (HINTS: partial fractions, telescoping sum)

- **a**. $\frac{9}{4}$
- **b**. $\frac{3}{2}$
- **c**. 1
- **d**. $\frac{1}{2}$
- **e**. ∝

6. The series
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n n^2}{n!}$$
 is

- a. Absolutely convergent
- **b**. Conditionally convergent
- c. Divergent

7. The series
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+3)2^{2n}}{3^{n+100}}$$
 is

- a. Absolutely convergent
- **b**. Conditionally convergent
- c. Divergent

8. Given that $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$, compute $\lim_{x \to 0} \frac{\ln(1+2x) - 2x + 2x^2}{(2x)^3}$

$$\lim_{x \to 0} \frac{\ln(1+2x) - 2x + 2x^2}{(2x)^3}$$

- **9**. For what values of x does the series

$$\sum_{n=0}^{\infty} \frac{1}{(x-3)^n}$$
 converge?

- **a**. x > 4 only
- **b**. x > 3 only
- **c**. 0 < x < 3 only
- **d**. x < 1 or x > 3 only
- **e**. x < 2 or x > 4 only
- **10**. In the Maclaurin series for $\frac{\sin(x^2)}{x}$ the coefficient of x^9 is

11. (25 points) You are given:
$$\cos(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!} = 1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \cdots$$
a. (5 pt) If $f(x) = \cos(x^2)$, find $f^{(6)}(0)$.

b. (5 pt) If
$$f(x) = \cos(x^2)$$
, find $f^{(16)}(0)$.

c. (10 pt) Use the **quartic** (degree 4) Taylor polynomial approximation about
$$x = 0$$
 for $\cos(x^2)$ to estimate $\int_0^{0.1} \cos(x^2) \ dx$.

d. (5 pt) Your result in (c) is equal to
$$\int_0^{0.1} \cos(x^2) \ dx$$
 to within \pm how much? Why?

12. (15 points) Find the interval of convergence for the series

Be sure to identify each of the following and give reasons:

ence for the series
$$\sum_{n=0}^{\infty} \frac{(x-6)^n}{2^n \sqrt{n}}.$$

(1 pt) Center of Convergence: a =

Radius of Convergence: R =(5 pt)

(1 pt) Right Endpoint: $x = \underline{\hspace{1cm}}$

At the Right Endpoint the Series
$$\left\{\begin{array}{c} \text{Converges} \\ \text{Diverges} \end{array}\right\}$$
 (circle one) (3 pt)

(1 pt) Left Endpoint: x =

At the Left Endpoint the Series
$$\left\{\begin{array}{c} \text{Converges} \\ \text{Diverges} \end{array}\right\}$$
 (circle one) (3 pt)

(1 pt) Interval of Convergence: