Name \qquad ID. \qquad

$1-10$	$/ 50$
11	$/ 10$
12	$/ 10$
13	$/ 10$
14	$/ 10$
15	$/ 10$

MATH 172

FINAL EXAM

Section 502

Multiple Choice: (5 points each)

Fall 1999	12	$/ 10$
P. Yasskin	13	$/ 10$
	14	$/ 10$
15	$/ 10$	

1. Find the area below $y=3 \sin (2 x)$ above the x-axis for $0 \leq x \leq \frac{\pi}{2}$.

a. $\frac{1}{2}$
b. $\frac{3}{2}$
c. $\frac{\pi}{2}$
d. $\frac{3 \pi}{2}$
e. 3
2. The region below $y=3 \sin (2 x)$ above the x-axis for $0 \leq x \leq \frac{\pi}{2} \quad$ is rotated about the y-axis. (See the figure in problem 1.) Which formula will give the volume of the solid of revolution?
a. $A=\int_{0}^{\pi / 2} x^{2} \sin (2 x) d x$
b. $A=\int_{0}^{\pi / 2} 3 x \sin (2 x) d x$
c. $A=\int_{0}^{\pi / 2} 6 \pi x \sin (2 x) d x$
d. $A=\int_{0}^{\pi / 2} 9 \pi \sin ^{2}(2 x) d x$
e. $A=\int_{0}^{\pi / 2} 18 \pi \sin ^{2}(2 x) d x$
3. A 1 m bar has linear mass density $\quad \rho=\frac{1}{1+x^{2}} \frac{\mathrm{~kg}}{\mathrm{~m}} \quad$ where x is measured from one end. Find the total mass.
a. $M=\frac{\pi}{4} \mathrm{~kg}$
b. $M=\frac{\pi}{2} \mathrm{~kg}$
c. $M=\frac{1}{2} \mathrm{~kg}$
d. $M=45 \mathrm{~kg}$
e. $M=90 \mathrm{~kg}$
4. A 1 m bar has linear mass density $\quad \rho=\frac{1}{1+x^{2}} \frac{\mathrm{~kg}}{\mathrm{~m}} \quad$ where x is measured from one end. Find the center of mass.
a. $\bar{x}=\frac{\ln 2}{90} \mathrm{~m}$
b. $\bar{x}=\frac{\ln 2}{2} \mathrm{~m}$
c. $\bar{x}=\frac{2 \ln 2}{\pi} \mathrm{~m}$
d. $\bar{x}=\frac{\ln 2}{2 \pi} \mathrm{~m}$
e. $\bar{x}=\frac{1}{2} \mathrm{~m}$
5. Compute $\int_{-\pi / 2}^{\pi / 2} \sin ^{6} \theta \cos \theta d \theta$
a. $-\frac{2}{7}$
b. $-\frac{1}{7}$
c. 0
d. $\frac{1}{7}$
e. $\frac{2}{7}$
6. The curve $y=x^{3}$ for $0 \leq x \leq 3$ is rotated about the x-axis. Which formula will give the area of the surface of revolution?
a. $A=\int_{0}^{3} 2 \pi x \sqrt{1+9 x^{4}} d x$
b. $A=\int_{0}^{3} 2 \pi x^{3} \sqrt{1+9 x^{4}} d x$
c. $A=\int_{0}^{3} 2 \pi x^{3} d x$
d. $A=\int_{0}^{3} 2 \pi x\left(3 x^{2}\right) d x$
e. $A=\int_{0}^{3} \pi x \sqrt{1+9 x^{4}} d x$
7. Compute $\int_{0}^{2} \frac{2 x}{4-x^{2}} d x$
a. $-\infty$
b. $-\ln 4$
c. $\frac{\pi}{4}$
d. $\ln 4$
e. ∞
8. If it requires 24 J of work to stretch a spring from rest to 4 m , how much work will it take to stretch it from 2 m to 6 m ?
a. 6 J
b. 12 J
c. 24 J
d. 48 J
e. 96 J
9. Which term is incorrect in the following partial fraction expansion?

$$
\frac{x^{3}-2 x+3}{(x-2)^{2}(x-3)\left(x^{2}+4\right)}=\underbrace{\frac{A}{x-2}}+\underbrace{\frac{B x+C}{(x-2)^{2}}}+\underbrace{\frac{D}{x-3}}+\underbrace{\frac{E x+F}{x^{2}+4}}
$$

a.
b.
c.
d.
e. They are all correct.
10. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}(x-2)^{n}$.
a. 0
b. $\frac{1}{3}$
c. 3
d. 9
e. ∞
11. (10 points) Compute $\int_{0}^{\pi / 2} 3 x \cos (2 x) d x$
12. (10 points) Find the length of the parametric curve given by

$$
x=t^{2}, \quad y=\frac{2}{3} t^{3}
$$ $z=\frac{1}{4} t^{4} \quad$ for $0 \leq t \leq 2$.

HINT: Factor the quantity in the square root.
13. (10 points) Find the volume of the solid whose base is the semi-circle $x^{2}+y^{2}=9$ for $y \geq 0$ and whose crosssections perpendicular to the x-axis are squares.
14. (10 points) Solve the differential equation $\frac{d y}{d x}=1+x^{2}+y^{2}+y^{2} x^{2} \quad$ with the initial condition $\quad y(3)=0$.
15. (10 points) Given the series $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots$,
a. (5 pts) compute the series for $e^{2 x}$
b. (5 pts) and use it to compute $\lim _{x \rightarrow 0} \frac{e^{2 x}-1-2 x}{x^{2}}$. (2 pts only for l'Hospital's Rule.)

