Name		Sec				
			1-11	/66	13	/10
MATH 221	Exam 1	Fall 2009	12	/20	11	/10
Section 503		P. Yasskin	12	/20	14	/10
Multiple Choice: (6 points each. No part credit.)					Total	/106

1. If $f(x,y) = x^2 \cos(y^2)$, which of the following is FALSE?

a.
$$f_x(x,y) = 2x\cos(y^2)$$

b. $f_y(x,y) = -2x^2y\sin(y^2)$

- **c**. $f_{xx}(x, y) = 2\cos(y^2)$
- **d**. $f_{yy}(x, y) = -4x^2y\cos(y^2)$
- **e**. $f_{xy}(x, y) = -4xy\sin(y^2)$
- **2**. The quadratic surface $x^2 y^2 + z^2 4x 6y 10z + 16 = 0$ is a
 - a. hyperboloid of 1 sheet and center (2,3,5)
 - **b**. hyperboloid of 1 sheet and center (2, -3, 5)
 - **c**. hyperboloid of 2 sheets and center (2,3,5)
 - d. hyperboloid of 2 sheets and center (2, -3, 5)
 - **e**. cone with vertex (2,3,5)

- **3**. An airplane is travelling due North at constant speed and a constant altitude as it crosses the equator. In what direction does the \hat{B} vector point? HINTS: Remember the Earth is curved. Ignore the rotation of the Earth.
 - a. East
 - **b**. West
 - c. South
 - **d**. Up
 - e. Down

- **4**. A triangle has edge vectors $\overrightarrow{AB} = (2, 1, -2)$ and $\overrightarrow{AC} = (-2, -2, 4)$. Find the altitude of the triangle if \overline{AB} is the base.
 - **a**. $\frac{2\sqrt{5}}{3}$

 - **b**. $\frac{\sqrt{5}}{3}$
 - **c**. $2\sqrt{5}$
 - d. $\sqrt{5}$
 - **e**. $3\sqrt{5}$

- 5. A box slides down the helical ramp $\vec{r}(t) = (4\cos t, 4\sin t, 9-3t)$ starting at height z = 9 and ending at height z = 0. How far does the box slide?
 - **a**. 3
 - **b**. 5
 - **c**. 15
 - **d**. 25
 - **e**. 75

- 6. A box slides down the helical ramp $\vec{r}(t) = (4\cos t, 4\sin t, 9 3t)$ starting at height z = 9 and ending at height z = 0 under the action of the force $\vec{F} = (-yz, xz, 5z)$. Find the work done on the box.
 - **a**. $\frac{9}{2}$
 - **b**. 9
 - **c**. $\frac{25}{2}$
 - **d**. $\frac{27}{2}$
 - **e**. 27

- 7. The diameter and height of a cylindrical trash can (no lid) are measured as D = 30 cm and h = 40 cm. The metal is 0.2 cm thick. Use differentials to estimate the volume of metal used to make the can.
 - **a**. 165π cm³
 - **b**. 210π cm³
 - **c**. 285π cm³
 - **d**. 330π cm³
 - **e**. 525π cm³

- 8. Find the equation of the plane tangent to the surface $z = x^3y^2$ at the point (2,1). Then the *z*-intercept is z =
 - **a**. -40
 - **b**. 8
 - **c**. -8
 - **d**. 32
 - **e**. -32

- **9**. Find the equation of the plane tangent to the surface $12xyz z^3 = 45$ at the point (1,2,3). Then the *z*-intercept is z =
 - **a**. 135
 - **b**. 45
 - **c**. $-\sqrt[3]{6}$
 - **d**. -45
 - **e**. −135

- **10**. Starting from the point (1,-2), find the maximum rate at which the function $f(x,y) = x^2y^3$ increases.
 - **a**. 20
 - **b**. 25
 - **c**. 400
 - **d**. (-16, 12)
 - **e**. (16,-12)

11. Which of the following is the plot of the vector field F(x,y) = (x + y, x - y)?

d.	K <th>. , ,</th>	. , ,
e.	· 1 1 4 4 7 7 7 7 L · 1 1 4 4 7 7 7 7 L L · 1 4 4 7 7 7 L L · 1 4 4 7 7 7 L L · 1 4 4 7 7 7 L L · 12 4 7 7 L · 12 4 7 7 L · 12 4 7	*

12. (20 points) Find the point on the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$ where the curvature is a local maximum or local minimum. Is it a local maximum or local minimum?

HINTS: First find the curvature $\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$. Then find the critical point and apply the first or second derivative test.

13. (10 points) The pressure, *P*, density, *D*, and temperature, *T*, of a certain ideal gas are related by P = 4DT. A fly is currently at the point $\vec{r}(t_0) = (3, 2, 4)$ and has velocity $\vec{v}(t_0) = (2, 1, 2)$. At the point (3, 2, 4), the density and temperature and their gradients are

$$D = 50 \qquad \vec{\nabla}D = \left(\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, \frac{\partial D}{\partial z}\right) = (0.1, 0.4, 0.2)$$
$$T = 300 \qquad \vec{\nabla}T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) = (2, 3, 1)$$

Find the time rate of change of the pressure, $\frac{dP}{dt}$, as seen by the fly.

14. (10 points) Determine whether or not each of these limits exists. If it exists, find its value.

a.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y^2}{x^6+3y^3}$$

