\qquad
\qquad

MATH 221
Exam 1
Fall 2009
Section 503
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-11$	$/ 66$	13	$/ 10$
12	$/ 20$	14	$/ 10$
		Total	$/ 106$

1. If $f(x, y)=x^{2} \cos \left(y^{2}\right)$, which of the following is FALSE?
a. $f_{x}(x, y)=2 x \cos \left(y^{2}\right)$
b. $f_{y}(x, y)=-2 x^{2} y \sin \left(y^{2}\right)$
c. $f_{x x}(x, y)=2 \cos \left(y^{2}\right)$
d. $f_{y y}(x, y)=-4 x^{2} y \cos \left(y^{2}\right)$
e. $f_{x y}(x, y)=-4 x y \sin \left(y^{2}\right)$
2. The quadratic surface $x^{2}-y^{2}+z^{2}-4 x-6 y-10 z+16=0$ is a
a. hyperboloid of 1 sheet and center $(2,3,5)$
b. hyperboloid of 1 sheet and center $(2,-3,5)$
c. hyperboloid of 2 sheets and center $(2,3,5)$
d. hyperboloid of 2 sheets and center ($2,-3,5$)
e. cone with vertex $(2,3,5)$
3. An airplane is travelling due North at constant speed and a constant altitude as it crosses the equator. In what direction does the \hat{B} vector point?
HINTS: Remember the Earth is curved. Ignore the rotation of the Earth.
a. East
b. West
c. South
d. Up
e. Down
4. A triangle has edge vectors $\overrightarrow{A B}=(2,1,-2)$ and $\overrightarrow{A C}=(-2,-2,4)$.

Find the altitude of the triangle if $\overline{A B}$ is the base.
a. $\frac{2 \sqrt{5}}{3}$
b. $\frac{\sqrt{5}}{3}$
c. $2 \sqrt{5}$
d. $\sqrt{5}$
e. $3 \sqrt{5}$
5. A box slides down the helical ramp $\vec{r}(t)=(4 \cos t, 4 \sin t, 9-3 t)$ starting at height $z=9$ and ending at height $z=0$. How far does the box slide?
a. 3
b. 5
c. 15
d. 25
e. 75
6. A box slides down the helical ramp $\vec{r}(t)=(4 \cos t, 4 \sin t, 9-3 t)$ starting at height $z=9$ and ending at height $z=0$ under the action of the force $\vec{F}=(-y z, x z, 5 z)$.
Find the work done on the box.
a. $\frac{9}{2}$
b. 9
c. $\frac{25}{2}$
d. $\frac{27}{2}$
e. 27
7. The diameter and height of a cylindrical trash can (no lid) are measured as $D=30$ cm and $h=40 \mathrm{~cm}$. The metal is 0.2 cm thick. Use differentials to estimate the volume of metal used to make the can.
a. $165 \pi \mathrm{~cm}^{3}$
b. $210 \pi \mathrm{~cm}^{3}$
c. $285 \pi \mathrm{~cm}^{3}$
d. $330 \pi \mathrm{~cm}^{3}$
e. $525 \pi \mathrm{~cm}^{3}$
8. Find the equation of the plane tangent to the surface $z=x^{3} y^{2}$ at the point $(2,1)$. Then the z-intercept is $z=$
a. -40
b. 8
c. -8
d. 32
e. -32
9. Find the equation of the plane tangent to the surface $12 x y z-z^{3}=45$ at the point $(1,2,3)$. Then the z-intercept is $z=$
a. 135
b. 45
c. $-\sqrt[3]{6}$
d. -45
e. -135
10. Starting from the point $(1,-2)$, find the maximum rate at which the function $f(x, y)=x^{2} y^{3}$ increases.
a. 20
b. 25
c. 400
d. $(-16,12)$
e. $(16,-12)$
11. Which of the following is the plot of the vector field $F(x, y)=(x+y, x-y)$?
a.

d.

b.

e.

c.

12. (20 points) Find the point on the curve $\vec{r}(t)=\left(e^{t}, \sqrt{2} t, e^{-t}\right)$ where the curvature is a local maximum or local minimum. Is it a local maximum or local minimum?
HINTS: First find the curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$. Then find the critical point and apply the first or second derivative test.
13. (10 points) The pressure, P, density, D, and temperature, T, of a certain ideal gas are related by $P=4 D T$. A fly is currently at the point $\vec{r}\left(t_{0}\right)=(3,2,4)$ and has velocity $\vec{v}\left(t_{0}\right)=(2,1,2)$.
At the point $(3,2,4)$, the density and temperature and their gradients are

$$
\begin{array}{ll}
D=50 & \vec{\nabla} D=\left(\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, \frac{\partial D}{\partial z}\right)=(0.1,0.4,0.2) \\
T=300 & \vec{\nabla} T=\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)=(2,3,1)
\end{array}
$$

Find the time rate of change of the pressure, $\frac{d P}{d t}$, as seen by the fly.
14. (10 points) Determine whether or not each of these limits exists. If it exists, find its value.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y^{2}}{x^{6}+3 y^{3}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$

