Name_____

MATH 221

Final

Fall 2009

Section 503

P. Yasskin

Multiple Choice: (4 points each. No part credit.)

1-11	/44	14	/10
12	/15	15	/20
13	/15	Total	/104

- 1. Find the point where the line x = 2t, y = 4 t, z = -2 + t intersects the plane x y + z = -2. At this point x + y + z = -2
 - **a**. −2
 - **b**. 0
 - **c**. 1
 - **d**. 4
 - **e**. 6
- **2**. Find the plane tangent to the graph of $z = x^2y^3$ at the point (2,1). The z-intercept is
 - **a**. −24
 - **b**. -16
 - **c**. -4
 - **d**. 0
 - **e**. 4
- 3. Find the line perpendicular to the cone $z^2 x^2 y^2 = 0$ at the point P = (4,3,5). This line intersects the xy-plane at
 - **a**. (3,4,0)
 - **b**. (-4, -3, 0)
 - \mathbf{c} . (8,6,0)
 - **d**. (-6, -8, 0)
 - **e**. $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$

- **4.** A box currently has length $L=20~{\rm cm}$ which is increasing at $4~{\rm cm/sec}$, width $W=15~{\rm cm}$ which is decreasing at $2~{\rm cm/sec}$, and height $H=12~{\rm cm}$ which is increasing at $1~{\rm cm/sec}$. At what rate is the volume changing?
 - **a**. $3 \text{ cm}^3/\text{sec}$
 - **b**. $7 \text{ cm}^3/\text{sec}$
 - **c**. 540 cm³/sec
 - **d**. 1500 cm³/sec
 - **e**. 3600 cm³/sec
- **5**. Duke Skywater is flying the Millenium Eagle through a galactic dust storm. Currently, his position is P=(30,-20,10) and his velocity is $\vec{v}=(-4,3,12)$. He measures that currently the dust density is $\rho=450$ and its gradient is $\vec{\nabla}\rho=(2,-2,1)$. Find the current rate of change of the dust density as seen by Duke.
 - **a**. -2
 - **b**. 2
 - **c**. 110
 - **d**. 448
 - **e**. 560
- 6. Under the same conditions as in #5, in what **unit** vector direction should Duke travel to **decrease** the dust density as quickly as possible?
 - **a**. (-2,2,-1)
 - **b**. (2,-2,1)
 - **c**. $\left(\frac{4}{13}, \frac{-3}{13}, \frac{-12}{13}\right)$
 - **d**. $\left(\frac{-4}{13}, \frac{3}{13}, \frac{12}{13}\right)$
 - **e**. $\left(\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$

- 7. The point (2,-1) is a critical point of the function $f = \frac{x^2y^2 + 2x 4y}{xy}$. Use the Second Derivative Test to classify the point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails
- **8**. Compute $\oint \vec{F} \cdot d\vec{s}$ counterclockwise around the rectangle $0 \le x \le \pi$ and $0 \le y \le 2\pi$ for $\vec{F} = (y \sin x + \sin y, x \cos y + \cos x)$.

HINT: Use the Fundamental Theorem of Calculus for Curves or Green's Theorem.

- **a**. -16π
- **b**. -8π
- **c**. 0
- **d**. 8π
- **e**. 16π
- **9.** Compute $\iint \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the sphere $x^2 + y^2 + z^2 = 4$ with outward normal for $\vec{F} = (xy^2z, yz^2x, zx^2y)$.

HINT: Use Stokes' Theorem or Gauss' Theorem.

- **a**. 4π
- **b**. 12π
- **c**. $\frac{32}{3}\pi$
- **d**. $\frac{64}{3}\pi$
- **e**. 0

10. Find the area of the piece of the paraboloid $z = x^2 + y^2$ above the circle $x^2 + y^2 \le 2$.

Note: The paraboloid may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$.

- **a**. $-\frac{\pi}{32} \left[\ln \left(2\sqrt{2} + 3 \right) 102\sqrt{2} \right]$
- **b**. $\frac{\pi}{2} \left[\ln \left(2\sqrt{2} + 3 \right) + 6\sqrt{2} \right]$
- **c**. $\frac{13\pi}{3}$
- **d**. $\frac{\pi}{6}(5^{3/2}-1)$
- **e**. $\frac{\pi}{6}(17^{3/2}-1)$

11. Use Gauss' Theorem to compute $\iint \vec{F} \cdot d\vec{S}$ outward through the complete surface of the tetrahedron with vertices (0,0,0), (2,0,0), (0,3,0) and (0,0,6) for $\vec{F} = (x^2,xy,xz)$.

Note: The top of the tetrahedron is the plane z = 6 - 3x - 2y.

- **a**. 4
- **b**. 6
- **c**. 9
- **d**. 12
- **e**. 16

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (15 points) Compute $\iint_D x dx dy$ over

the "diamond shaped" region D in the first quadrant bounded by the parabolas

$$y = 16 - x^2$$
 $y = 8 - x^2$
 $y = 4 + x^2$ and $y = x^2$

HINTS: Use the coordinates: $u = y + x^2$, $v = y - x^2$. Solve for x and y.

13. (15 points) Find the area and *y*-component of the centroid (center of mass with $\rho = 1$) of the upper half of the cardioid $r = 1 + \cos \theta$.

14. (10 points) Find 3 positive numbers x, y and z, whose sum is 120 such that $f(x,y,z) = xy^2z^3$ is a maximum.

15. (20 points) Verify Stokes' Theorem $\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial H} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (y, -x, xz + yz)$

and the hemisphere $z = \sqrt{9 - x^2 - y^2}$ oriented up.

Use the following steps:

a. Parametrize the boundary curve and compute the line integral:

$$\vec{r}(\theta) =$$

$$\vec{v}(\theta) =$$

$$\vec{F}(\vec{r}(\theta)) =$$

$$\oint_{\partial H} \vec{F} \cdot d\vec{s} =$$

b. Compute the surface integral using the parametrization:

$$\vec{R}(\varphi,\theta) = (3\sin\varphi\cos\theta, 3\sin\varphi\sin\theta, 3\cos\varphi)$$

$$\vec{e}_{\varphi} =$$

$$\vec{e}_{\theta} =$$

$$\vec{N} =$$

$$\vec{\nabla} \times \vec{F} =$$

$$\iint\limits_{H} \overrightarrow{\nabla} \times \overrightarrow{F} \boldsymbol{\cdot} d\overrightarrow{S} =$$