\qquad
MATH 221
Final
Fall 2009
Section 503
P. Yasskin

Multiple Choice: (4 points each. No part credit.)

$1-11$	$/ 44$	14	$/ 10$
12	$/ 15$	15	$/ 20$
13	$/ 15$	Total	$/ 104$

1. Find the point where the line $x=2 t, \quad y=4-t, \quad z=-2+t$ intersects the plane $x-y+z=-2$. At this point $x+y+z=$
a. -2
b. 0
c. 1
d. 4
e. 6
2. Find the plane tangent to the graph of $z=x^{2} y^{3}$ at the point $(2,1)$. The z-intercept is
a. -24
b. -16
c. -4
d. 0
e. 4
3. Find the line perpendicular to the cone $z^{2}-x^{2}-y^{2}=0$ at the point $P=(4,3,5)$. This line intersects the $x y$-plane at
a. $(3,4,0)$
b. $(-4,-3,0)$
c. $(8,6,0)$
d. $(-6,-8,0)$
e. $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$
4. A box currently has length $L=20 \mathrm{~cm}$ which is increasing at $4 \mathrm{~cm} / \mathrm{sec}$, width $W=15 \mathrm{~cm}$ which is decreasing at $2 \mathrm{~cm} / \mathrm{sec}$, and height $H=12 \mathrm{~cm}$ which is increasing at $1 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume changing?
a. $3 \mathrm{~cm}^{3} / \mathrm{sec}$
b. $7 \mathrm{~cm}^{3} / \mathrm{sec}$
c. $540 \mathrm{~cm}^{3} / \mathrm{sec}$
d. $1500 \mathrm{~cm}^{3} / \mathrm{sec}$
e. $3600 \mathrm{~cm}^{3} / \mathrm{sec}$
5. Duke Skywater is flying the Millenium Eagle through a galactic dust storm. Currently, his position is $P=(30,-20,10)$ and his velocity is $\vec{v}=(-4,3,12)$. He measures that currently the dust density is $\rho=450$ and its gradient is $\vec{\nabla} \rho=(2,-2,1)$. Find the current rate of change of the dust density as seen by Duke.
a. -2
b. 2
c. 110
d. 448
e. 560
6. Under the same conditions as in \#5, in what unit vector direction should Duke travel to decrease the dust density as quickly as possible?
a. $(-2,2,-1)$
b. $(2,-2,1)$
c. $\left(\frac{4}{13}, \frac{-3}{13}, \frac{-12}{13}\right)$
d. $\left(\frac{-4}{13}, \frac{3}{13}, \frac{12}{13}\right)$
e. $\left(\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$
7. The point $(2,-1)$ is a critical point of the function $f=\frac{x^{2} y^{2}+2 x-4 y}{x y}$. Use the Second Derivative Test to classify the point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
8. Compute $\oint \vec{F} \cdot d \vec{s}$ counterclockwise around the rectangle $0 \leq x \leq \pi$ and $0 \leq y \leq 2 \pi$ for $\vec{F}=(y \sin x+\sin y, x \cos y+\cos x)$.
HINT: Use the Fundamental Theorem of Calculus for Curves or Green's Theorem.
a. -16π
b. -8π
c. 0
d. 8π
e. 16π
9. Compute $\iint \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ over the sphere $x^{2}+y^{2}+z^{2}=4$ with outward normal for $\vec{F}=\left(x y^{2} z, y z^{2} x, z x^{2} y\right)$.
HINT: Use Stokes' Theorem or Gauss' Theorem.
a. 4π
b. 12π
c. $\frac{32}{3} \pi$
d. $\frac{64}{3} \pi$
e. 0
10. Find the area of the piece of the paraboloid $z=x^{2}+y^{2}$ above the circle $x^{2}+y^{2} \leq 2$.

Note: The paraboloid may be parametrized by $\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$.
a. $-\frac{\pi}{32}[\ln (2 \sqrt{2}+3)-102 \sqrt{2}]$
b. $\frac{\pi}{2}[\ln (2 \sqrt{2}+3)+6 \sqrt{2}]$
c. $\frac{13 \pi}{3}$
d. $\frac{\pi}{6}\left(5^{3 / 2}-1\right)$
e. $\frac{\pi}{6}\left(17^{3 / 2}-1\right)$
11. Use Gauss' Theorem to compute $\iint \vec{F} \cdot d \vec{S}$ outward through the complete surface of the tetrahedron with vertices $(0,0,0),(2,0,0),(0,3,0)$ and $(0,0,6)$ for $\vec{F}=\left(x^{2}, x y, x z\right)$.
Note: The top of the tetrahedron is the plane $z=6-3 x-2 y$.
a. 4
b. 6
c. 9
d. 12
e. 16
12. (15 points) Compute $\iint_{D} x d x d y$ over the "diamond shaped" region D in the first quadrant bounded by the parabolas

$$
\begin{array}{ll}
y=16-x^{2} \\
y=4+x^{2}
\end{array} \quad \text { and } \quad y=8-x^{2}, y=x^{2}
$$

HINTS: Use the coordinates: $u=y+x^{2}, v=y-x^{2}$. Solve for x and y.
13. (15 points) Find the area and y-component of the centroid (center of mass with $\rho=1$) of the upper half of the cardioid $r=1+\cos \theta$.

14. (10 points) Find 3 positive numbers x, y and z, whose sum is 120 such that $f(x, y, z)=x y^{2} z^{3}$ is a maximum.
15. (20 points) Verify Stokes' Theorem $\iint_{H} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=\oint_{\partial H} \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y,-x, x z+y z)$ and the hemisphere $z=\sqrt{9-x^{2}-y^{2}}$ oriented up. Use the following steps:

a. Parametrize the boundary curve and compute the line integral:

$$
\begin{aligned}
& \vec{r}(\theta)= \\
& \vec{v}(\theta)= \\
& \vec{F}(\vec{r}(\theta))= \\
& \oint_{\partial H} \vec{F} \cdot d \vec{s}=
\end{aligned}
$$

b. Compute the surface integral using the parametrization:
$\vec{R}(\varphi, \theta)=(3 \sin \varphi \cos \theta, \quad 3 \sin \varphi \sin \theta, \quad 3 \cos \varphi \quad)$
$\vec{e}_{\varphi}=$
$\vec{e}_{\theta}=$
$\vec{N}=$
$\vec{\nabla} \times \vec{F}=$
$\iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=$

