Name___

MATH 221

Paper Homework 2

Fall 2009

Section 503

P. Yasskin

Consider the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$. Compute each of the following. Show your work. Simplify where possible.

1. velocity

$$\vec{v}(t) =$$

2. acceleration

$$\vec{a}(t) =$$

3. jerk

$$\vec{j}(t) =$$

4. speed (HINT: The quantity in the square root is a perfect square.)

$$|\vec{v}(t)| =$$

5. arclength between (1,0,1) and $\left(e,\sqrt{2},\frac{1}{e}\right)$

$$L =$$

6. unit tangent vector

$$\hat{T} =$$

7. $\vec{v} \times \vec{a}$

$$\vec{v} \times \vec{a} =$$

8. $|\vec{v} \times \vec{a}|$ $|\vec{v} \times \vec{a}| =$

9. unit binormal vector

$$\vec{B} =$$

10. unit normal vector

$$\vec{N} =$$

11. curvature

12. torsion

$$\tau =$$

13. tangential acceleration (compute in 2 ways)

$$a_T =$$

$$a_T =$$

14. normal acceleration (compute in 2 ways)

$$a_N =$$

$$a_N =$$

- **15**. mass of a wire between (1,0,1) and $\left(e,\sqrt{2},\frac{1}{e}\right)$ with linear density $\rho=x-z$ M=
- **16**. work to move a bead along the wire from (1,0,1) to $\left(e,\sqrt{2},\frac{1}{e}\right)$ with the force $\vec{F}=(z,y,x)$ $\vec{F}(\vec{r}(t))=$

$$W =$$