\qquad
\qquad

MATH 221
Section 500
Exam 1

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	14	$/ 11$
11	$/ 11$	15	$/ 11$
12	$/ 11$		
13	$/ 11$	Total	$/ 105$

1. Consider the line $X=P+\vec{v}$ where $P=(2,3,2)$ and $\vec{v}=(2,-1,2)$.

Drop a perpendicular from the point $Q=(-1,0,5)$ to a point R on the line. Then $R=$ HINT: Draw a figure.
a. $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
b. $\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}\right)$
c. $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
d. $(4,2,4)$
e. $\left(\frac{8}{3}, \frac{10}{3}, \frac{8}{3}\right)$
2. If \vec{u} is 5 cm long and points 30° WEST of NORTH and \vec{v} is 4 cm long and points 30° EAST of NORTH, then $\vec{u} \times \vec{v}$ is
a. 10 cm long and points DOWN.
b. 10 cm long and points UP.
c. 10 cm long and points SOUTH.
d. $10 \sqrt{3} \mathrm{~cm}$ long and points DOWN.
e. $10 \sqrt{3} \mathrm{~cm}$ long and points SOUTH.
3. Find the point where the line $(x, y, z)=(3-2 t, 2-t, 1+t)$ intersects the plane $x+y+3 z=2$. At this point, $x+y+z=$
a. 2
b. 4
c. 6
d. 8
e. The line does not intersect the plane.
4. The graph of the equation $x^{2}+4 x-y^{2}+4 y+z^{2}+2 z=-1$ is a
a. hyperboloid of one sheet
b. hyperboloid of two sheets
c. cone
d. hyperbolic paraboloid
e. hyperbolic cylinder
5. For the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$, which of the following is FALSE?
a. $\vec{v}=(3,4 \cos (4 t),-4 \sin (4 t))$
b. $\vec{a}=(0,-16 \sin (4 t),-16 \cos (4 t))$
c. $\vec{j}=(0,-64 \cos (4 t), 64 \sin (4 t))$
d. speed $=25$
e. arclength between $(0,0,1)$ and $(3 \pi, 0,1)$ is 5π
6. For the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$, which of the following is FALSE?
a. $\hat{T}=\left(\frac{3}{5}, \frac{4}{5} \cos (4 t),-\frac{4}{5} \sin (4 t)\right)$
b. $\hat{N}=(0,-\sin (4 t),-\cos (4 t))$
c. $\hat{B}=\left(-\frac{4}{5},-\frac{3}{5} \cos (4 t),-\frac{3}{5} \sin (4 t)\right)$
d. $a_{T}=0$
e. $a_{N}=16$
7. Which of the following is the contour plot of $f(x, y)=y^{2}+x+1$?
a.

b.

c.

d.

e.

8. If $P(2,3)=5$ and $\frac{\partial P}{\partial x}(2,3)=0.4$ and $\frac{\partial P}{\partial y}(2,3)=-0.3$, estimate $P(2.1,2.8)$.
a. 4.9
b. 4.98
c. 4.99
d. 5.01
e. 5.1
9. Currently for a certain box, the length L is 5 cm and increasing at $0.2 \mathrm{~cm} / \mathrm{sec}$, the width W is 4 cm and decreasing at $0.3 \mathrm{~cm} / \mathrm{sec}$, the height H is 3 cm and increasing at $0.1 \mathrm{~cm} / \mathrm{sec}$. Then currently, the volume V is
a. increasing at $0.1 \mathrm{~cm} / \mathrm{sec}$.
b. decreasing at $0.1 \mathrm{~cm} / \mathrm{sec}$.
c. increasing at $0.2 \mathrm{~cm} / \mathrm{sec}$.
d. decreasing at $0.2 \mathrm{~cm} / \mathrm{sec}$.
e. increasing at $0.3 \mathrm{~cm} / \mathrm{sec}$.
10. The temperature of a frying pan is $T=\frac{1}{1+x^{2}+4 y^{2}}$. An ant is located at $(2,1)$. In what unit vector direction should the ant move to decrease the temperature as fast as possible?
a. $(-1,-2)$
b. $(1,2)$
c. $(1,-2)$
d. $\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$
e. $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$

Work Out: (Points indicated. Part credit possible. Show all work.)
11. (11 points) Find the mass of the helical wire $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$ from $(0,0,1)$ to $(3 \pi, 0,1)$ if its linear density is $\rho=x^{2}+y^{2}+z^{2}$.
12. (11 points) A bead slides along the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$ from $(0,0,1)$ to $(3 \pi, 0,1)$ under the action of the force $\vec{F}=(x, x y, x z)$. Find the work done.
13. (11 points) Find the plane tangent to the graph of the function $z=x^{2} y+y^{3} x$ at the point $(x, y)=(2,1)$. Find the z-intercept.
14. (11 points) Find the plane tangent to the level surface $x \sin z+y \cos z=3$ at the point $(x, y, z)=\left(3,2, \frac{\pi}{2}\right)$. Find the z-intercept.
15. (11 points) Determine whether or not each of these limits exists. If it exists, find its value.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+3 y^{6}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6}+y^{6}}{\left(x^{2}+y^{2}\right)^{2}}$
c. $\lim _{(x, y) \rightarrow(0,0)} \frac{x+x y^{2}}{x+x^{3}}$

