Name \qquad Sec \qquad

MATH 221
Section 500
Exam 1
Solutions
Spring 2011

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	14	$/ 11$
11	$/ 11$	15	$/ 11$
12	$/ 11$		
13	$/ 11$	Total	$/ 105$

1. Consider the line $X=P+\vec{v}$ where $P=(2,3,2)$ and $\vec{v}=(2,-1,2)$.

Drop a perpendicular from the point $Q=(-1,0,5)$ to a point R on the line. Then $R=$ HINT: Draw a figure.
a. $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
b. $\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}\right) \quad$ Correct Choice
c. $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
d. $(4,2,4)$
e. $\left(\frac{8}{3}, \frac{10}{3}, \frac{8}{3}\right)$
$\overrightarrow{P Q}=Q-P=(-3,-3,3) \quad \operatorname{proj}_{\vec{v}} \overrightarrow{P Q}=\frac{\overrightarrow{P Q} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v}=\frac{-6+3+6}{9}(2,-1,2)=\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
$R=P+\operatorname{proj}_{\vec{v}} \overrightarrow{P Q}=\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}\right)$
2. If \vec{u} is 5 cm long and points 30° WEST of NORTH and \vec{v} is 4 cm long and points 30° EAST of NORTH, then $\vec{u} \times \vec{v}$ is
a. 10 cm long and points DOWN.
b. 10 cm long and points UP.
c. 10 cm long and points SOUTH.
d. $10 \sqrt{3} \mathrm{~cm}$ long and points DOWN. Correct Choice
e. $10 \sqrt{3} \mathrm{~cm}$ long and points SOUTH.

Since the angle between the vectors is $\theta=60^{\circ}$, the length is
$|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta=5 \cdot 4 \cdot \frac{\sqrt{3}}{2}=10 \sqrt{3}$
Put your right hand fingers pointing 30° WEST of NORTH with the palm facing 30° EAST of NORTH, then your thumb points DOWN.
3. Find the point where the line $(x, y, z)=(3-2 t, 2-t, 1+t)$ intersects the plane $x+y+3 z=2$. At this point, $x+y+z=$
a. 2
b. 4
c. 6
d. 8
e. The line does not intersect the plane. Correct Choice

Substitute the line into the plane: $(3-2 t)+(2-t)+3(1+t)=2$ or $8=2$ which is impossible. So the line does not intersect the plane.
4. The graph of the equation $x^{2}+4 x-y^{2}+4 y+z^{2}+2 z=-1$ is a
a. hyperboloid of one sheet
b. hyperboloid of two sheets
c. cone Correct Choice
d. hyperbolic paraboloid
e. hyperbolic cylinder
x^{2}, y^{2}, and z^{2} are all present with two +'s and one -. So this is a hyperboloid or cone. Complete the squares to get $(x+2)^{2}-(y-2)^{2}+(z+1)^{2}=0$ which is a cone.
5. For the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$, which of the following is FALSE?
a. $\vec{v}=(3,4 \cos (4 t),-4 \sin (4 t))$
b. $\vec{a}=(0,-16 \sin (4 t),-16 \cos (4 t))$
c. $\vec{j}=(0,-64 \cos (4 t), 64 \sin (4 t))$
d. speed $=25$ Correct Choice
e. arclength between $(0,0,1)$ and $(3 \pi, 0,1)$ is 5π
speed $=|\vec{v}|=\sqrt{9+16 \cos ^{2}(4 t)+16 \sin ^{2}(4 t)}=\sqrt{25}=5$
6. For the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$, which of the following is FALSE?
a. $\hat{T}=\left(\frac{3}{5}, \frac{4}{5} \cos (4 t),-\frac{4}{5} \sin (4 t)\right)$
b. $\hat{N}=(0,-\sin (4 t),-\cos (4 t))$
c. $\hat{B}=\left(-\frac{4}{5},-\frac{3}{5} \cos (4 t),-\frac{3}{5} \sin (4 t)\right) \quad$ Correct Choice
d. $a_{T}=0$
e. $a_{N}=16$
$\vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 4 \cos (4 t) & -4 \sin (4 t) \\ 0 & -16 \sin (4 t) & -16 \cos (4 t)\end{array}\right|=16(-4,3 \cos (4 t),-3 \sin (4 t))$
$|\vec{v} \times \vec{a}|=16 \sqrt{16+9 \cos ^{2}(4 t)+9 \sin ^{2}(4 t)}=80$
$\hat{B}=\frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|}=\left(-\frac{4}{5}, \frac{3}{5} \cos (4 t),-\frac{3}{5} \sin (4 t)\right)$
7. Which of the following is the contour plot of $f(x, y)=y^{2}+x+1$?
a.

b.

c.

d.

e.

(a) Correct Choice

The contours are $y^{2}+x+1=C$ or $x=C-1-y^{2}$ which are parabolas opening left.
8. If $P(2,3)=5$ and $\frac{\partial P}{\partial x}(2,3)=0.4$ and $\frac{\partial P}{\partial y}(2,3)=-0.3$, estimate $P(2.1,2.8)$.
a. 4.9
b. 4.98
c. 4.99
d. 5.01
e. 5.1 Correct Choice
$P(x, y)=P(2,3)+P_{x}(2,3)(x-2)+P_{y}(2,3)(y-3)$
$P(2.1,2.8)=P(2,3)+P_{x}(2,3)(2.1-2)+P_{y}(2,3)(2.8-3)$
$=5+.4(.1)-.3(-.2)=5.1$
9. Currently for a certain box, the length L is 5 cm and increasing at $0.2 \mathrm{~cm} / \mathrm{sec}$, the width W is 4 cm and decreasing at $0.3 \mathrm{~cm} / \mathrm{sec}$, the height H is 3 cm and increasing at $0.1 \mathrm{~cm} / \mathrm{sec}$. Then currently, the volume V is
a. increasing at $0.1 \mathrm{~cm} / \mathrm{sec}$.
b. decreasing at $0.1 \mathrm{~cm} / \mathrm{sec}$. Correct Choice
c. increasing at $0.2 \mathrm{~cm} / \mathrm{sec}$.
d. decreasing at $0.2 \mathrm{~cm} / \mathrm{sec}$.
e. increasing at $0.3 \mathrm{~cm} / \mathrm{sec}$.
$V=L W H \quad \frac{d L}{d t}=0.2 \quad \frac{d W}{d t}=-0.3 \quad \frac{d H}{d t}=0.1$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{\partial V}{\partial L} \frac{d L}{d t}+\frac{\partial V}{\partial W} \frac{d W}{d t}+\frac{\partial V}{\partial H} \frac{d H}{d t}=W H \frac{d L}{d t}+L H \frac{d W}{d t}+L W \frac{d H}{d t} \\
& =4 \cdot 3 \cdot 0.2-5 \cdot 3 \cdot 0.3+5 \cdot 4 \cdot 0.1=-0.1
\end{aligned}
$$

10. The temperature of a frying pan is $T=\frac{1}{1+x^{2}+4 y^{2}}$. An ant is located at $(2,1)$. In what unit vector direction should the ant move to decrease the temperature as fast as possible?
a. $(-1,-2)$
b. $(1,2)$ Part Credit
c. $(1,-2)$
d. $\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right) \quad$ Part Credit
e. $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ Correct Choice
$\vec{\nabla} T=\left.\left(\frac{-2 x}{\left(1+x^{2}+4 y^{2}\right)^{2}}, \frac{-8 y}{\left(1+x^{2}+4 y^{2}\right)^{2}}\right) \quad \vec{\nabla} T\right|_{(2,1)}=\left(\frac{-4}{81}, \frac{-8}{81}\right)$
$|\vec{\nabla} T|=\frac{\sqrt{16+64}}{81}=\frac{\sqrt{80}}{81}=\frac{4 \sqrt{5}}{81}$
Maximum decrease is in the direction of $\vec{v}=-\left.\vec{\nabla} T\right|_{(2,1)}=\left(\frac{4}{81}, \frac{8}{81}\right)$.
The unit vector is $\frac{\vec{v}}{|\vec{v}|}=\frac{81}{4 \sqrt{5}}\left(\frac{4}{81}, \frac{8}{81}\right)=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$

Work Out: (Points indicated. Part credit possible. Show all work.)
11. (11 points) Find the mass of the helical wire $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$ from $(0,0,1)$ to $(3 \pi, 0,1)$ if its linear density is $\rho=x^{2}+y^{2}+z^{2}$.
$\vec{v}=(3,4 \cos (4 t),-4 \sin (4 t)) \quad|\vec{v}|=\sqrt{9+16 \cos ^{2}(4 t)+16 \sin ^{2}(4 t)}=5$
$\rho(\vec{r}(t))=9 t^{2}+\sin ^{2}(4 t)+\cos ^{2}(4 t)=9 t^{2}+1$
$M=\int_{(0,0,1)}^{(3 \pi, 0,1)} \rho d s=\int_{0}^{\pi} \rho(\vec{r}(t))|\vec{v}| d t=\int_{0}^{\pi}\left(9 t^{2}+1\right) 5 d t=5\left[3 t^{3}+t\right]_{0}^{\pi}=5\left(3 \pi^{3}+\pi\right)$
12. (11 points) A bead slides along the helix $\vec{r}(t)=(3 t, \sin (4 t), \cos (4 t))$ from $(0,0,1)$ to $(3 \pi, 0,1)$ under the action of the force $\vec{F}=(x, x y, x z)$. Find the work done.
$\vec{v}=(3,4 \cos (4 t),-4 \sin (4 t)) \quad \vec{F}(\vec{r}(t))=(3 t, 3 t \sin (4 t), 3 t \cos (4 t))$
$\vec{F} \cdot \vec{v}=9 t+12 t \cos (4 t) \sin (4 t)-12 t \sin (4 t) \cos (4 t)=9 t$
$W=\int_{(0,0,1)}^{(3 \pi, 0,1)} \vec{F} \cdot d \vec{s}=\int_{0}^{\pi} \vec{F} \cdot \vec{v} d t=\int_{0}^{\pi} 9 t d t=\left[\frac{9 t^{2}}{2}\right]_{0}^{\pi}=\frac{9}{2} \pi^{2}$
13. (11 points) Find the plane tangent to the graph of the function $z=x^{2} y+y^{3} x$ at the point $(x, y)=(2,1)$. Find the z-intercept.
$f(x, y)=x^{2} y+y^{3} x, \quad f_{x}(x, y)=2 x y+y^{3}, \quad f_{y}(x, y)=x^{2}+3 y^{2} x, \quad f(2,1)=6, \quad f_{x}(2,1)=5, \quad f_{y}(2,1)=10$ $z=f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)=6+5(x-2)+10(y-1)=5 x+10 y-14$

The plane is $z=5 x+10 y-14$. The z-intercept is -14 .
14. (11 points) Find the plane tangent to the level surface $x \sin z+y \cos z=3$ at the point $(x, y, z)=\left(3,2, \frac{\pi}{2}\right)$. Find the z-intercept.
$F(x, y, z)=x \sin z+y \cos z \quad \vec{\nabla} F=(\sin z, \cos z, x \cos z-y \sin z) \quad \vec{N}=\left.\vec{\nabla} F\right|_{(3,2, \pi / 2)}=(1,0,-2)$
$\vec{N} \cdot X=\vec{N} \cdot P \quad x-2 z=3-2\left(\frac{\pi}{2}\right)=3-\pi$
The plane is $x-2 z=3-\pi$ or $z=\frac{1}{2}(x+\pi-3)=\frac{1}{2} x+\frac{\pi}{2}-\frac{3}{2}$. The z-intercept is $\frac{\pi}{2}-\frac{3}{2}$.
15. (11 points) Determine whether or not each of these limits exists. If it exists, find its value.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+3 y^{6}}$

Approach along the x-axis: \quad Approach along $x=y^{3}$:

$$
\begin{array}{ll}
\lim _{\substack{y=0 \\
x \rightarrow 0}} \frac{x y^{3}}{x^{2}+3 y^{6}}=\lim _{x \rightarrow 0} \frac{0}{3 y^{6}}=0 & \lim _{x} \frac{x y^{3}}{x^{3}}=\lim _{x \rightarrow 0} \frac{y^{6}}{4 y^{6}}=\frac{1}{4} \\
y \rightarrow 0
\end{array}
$$

Limit Does Not Exist

b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6}+y^{6}}{\left(x^{2}+y^{2}\right)^{2}}$

Use polar coordinates $x=r \cos \theta \quad y=y \sin \theta$
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6}+y^{6}}{\left(x^{2}+y^{2}\right)^{2}}=\lim _{r \rightarrow 0} \frac{r^{6} \cos ^{6} \theta+r^{6} \sin ^{6} \theta}{r^{4}}=\lim _{r \rightarrow 0} r^{2}\left(\cos ^{6} \theta+\sin ^{6} \theta\right)=0$
because $\cos ^{6} \theta+\sin ^{6} \theta$ is bounded between 0 and 1 .
Limit Exists with value 0 .
c. $\lim _{(x, y) \rightarrow(0,0)} \frac{x+x y^{2}}{x+x^{3}}$

Factor x out of the top and bottom. Then evaluate:
$\lim _{(x, y) \rightarrow(0,0)} \frac{x+x y^{2}}{x+x^{3}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x\left(1+y^{2}\right)}{x\left(1+x^{2}\right)}=\lim _{(x, y) \rightarrow(0,0)} \frac{1+y^{2}}{1+x^{2}}=1$
Limit Exists with value 1.

