Sec_

MATH 221

Final Exam

Spring 2011

Section 500

P. Yasskin

Multiple Choice: (4 points each. No part credit.)

		Total	/105
13	/16	15	/25
1-12	/48	14	/16

- 1. Find the angle between the vectors $\vec{u} = (12, -3, 4)$ and $\vec{v} = (2, 1, -2)$.

 - **c**. $\frac{\pi}{3}$ **d**. $\frac{2\pi}{3}$
 - **e.** $\cos^{-1} \left(\frac{1}{3} \right)$
- **2**. If \vec{u} points DOWN and \vec{v} points NORTHEAST then $\vec{u} \times \vec{v}$ points
 - a. NORTHWEST
 - **b**. SOUTHWEST
 - c. SOUTHEAST
 - d. UP
 - e. WEST
- **3**. Find the point where the lines (x, y, z) = (3 t, 2 + t, 2t) and (x, y, z) = (-1 + 2t, 5 t, 3 + t) intersect. At this point x + y + z =

 - **b**. 9
 - **c**. $\frac{25}{3}$
 - **d**. 11
 - e. They do not intersect.

4. For the curve $\vec{r}(t) = (t^2, 2t, \ln t)$, compute $\hat{B} = \frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|}$.

a.
$$\left(\frac{-1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$$

b.
$$\left(\frac{1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$$

c.
$$\left(\frac{1}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$$

d.
$$\left(\frac{-1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{-2t^2}{2t^2+1}\right)$$

e.
$$\left(\frac{-1}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{-2t^2}{2t^2+1}\right)$$

5. Find the equation of the plane tangent to the graph of $z = 3x^2y - 2y^3$ at the point (2,1). The z-intercept is

6. Find the equation of the line perpendicular to the graph of $x^3y^2z - 2x^2z^2 = 10$ at the point (1,3,2). This line intersects the xy-plane at

a.
$$\left(-\frac{19}{3}, 2, 0\right)$$

b. $\left(2, \frac{19}{3}, 0\right)$
c. $\left(\frac{19}{3}, -2, 0\right)$

b.
$$\left(2, \frac{19}{3}, 0\right)$$

c.
$$\left(\frac{19}{3}, -2, 0\right)$$

d.
$$(-75, -21, 0)$$

- 7. Han Deut is flying the Millennium Eagle through a dangerous zenithon field whose density is $\rho = xyz$. If his current position is $\vec{r} = (2, 1, -1)$, and his current velocity is $\vec{v} = (3, 2, 1)$ find the current rate of change of the density.
 - **a**. −5
 - **b**. −1
 - **c**. 1
 - **d**. 3
 - **e**. 18
- **8**. Compute $\iint xy \, dA$ over the region between $y = x^2$ and y = 3x.

 - a. $\frac{3^3}{4}$ b. $\frac{3^4}{5}$ c. $\frac{3^5}{4}$ d. $\frac{3^5}{8}$
 - **e**. $\frac{3^6}{2}$
- **9.** Compute $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \cos(x^2 + y^2) dx dy.$

HINT: Switch to polar coordinates.

- **a**. $\pi \cos(4)$
- **b**. $\pi \cos(4) \pi$
- $\mathbf{c}. \ \frac{\pi}{2}\sin(4)$
- **d**. $\frac{\pi}{2}\sin(4) \frac{\pi}{2}$
- **e**. $2\pi \cos(4) 2\pi$

- **10**. Compute $\iiint z \, dV$ over the volume above the paraboloid $z = x^2 + y^2$ below z = 4.
 - **a**. $\frac{64\pi}{3}$
 - **b**. $\frac{32\pi}{3}$
 - **c**. $\frac{16\pi}{5}$
 - **d**. 21π
 - **e**. 11π
- **11.** Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = (y + z, x + z, x + y)$ along the curve $\vec{r}(t) = \left(2\frac{t^2 + 2}{t + 1}, 3\frac{t^2 + 4}{t + 2}, 4\frac{t^2 + 6}{t + 3}\right)$ from (4, 6, 8) to (3, 5, 7).

HINT: Find a scalar potential.

- **a**. 33
- **b**. 6
- **c**. 0
- **d**. -6
- **e**. -33
- **12**. Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (\sin(x^3) 4y, \tan(y^5) + 6x)$ counterclockwise around the triangle with vertices (0,0), (2,0) and (0,6). Hint: Use Green's Theorem.

a. 6

- **b**. 12
- **c**. 30
- **d**. 60
- **e**. 80

Work Out: (Points indicated. Part credit possible. Show all work.)

13. (16 points) Use Lagrange multipliers to find 4 numbers, a, b, c, and d, for which a+2b+3c+4d=48 and whose product is a maximum.

14. (16 points) Find the mass and the *y*-component of the center of mass of the quarter of the sphere $x^2 + y^2 + z^2 \le 4$ in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ if the mass density is $\delta = xyz$.

15. (25 points) Verify Stokes' Theorem $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (yz, -xz, z^2)$ and the cone $z = 2\sqrt{x^2 + y^2} \le 2$ oriented down and out.

Be careful with orientations. Use the following steps:

First the Left Hand Side:

a. Compute the curl:

$$\vec{\nabla} \times \vec{F} =$$

b. Complete the parametrization of the surface *C*:

$$\vec{R}(r,\theta) = \left(r\cos\theta, r\sin\theta, \underline{\hspace{1cm}}\right)$$

c. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

d. Compute the normal vector:

$$\vec{N} =$$

e. Evaluate $\vec{\nabla} \times \vec{F}$ on the surface:

$$\vec{\nabla} \times \vec{F} \, \Big|_{\vec{R}(r,\theta)} =$$

f. Compute the dot product:

$$\vec{\nabla} \times \vec{F} \cdot \vec{N} =$$

- g. Find the limits of integration:
- h. Compute the left hand side:

$$\iint\limits_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

Second the Right Hand Side:

i. Parametrize the boundary circle ∂C :

$$\vec{r}(\theta) =$$

j. Compute the tangent vector:

$$\vec{v} =$$

k. Evaluate $\vec{F} = (yz, -xz, z^2)$ on the curve:

$$\vec{F}\big|_{\vec{r}(\theta)} =$$

I. Compute the dot product:

$$\vec{F} \cdot \vec{v} =$$

m. Compute the right hand side:

$$\oint_{\partial C} \vec{F} \cdot d\vec{s} =$$