Name_____ ID____

Exam 1 Fall 2012

Sections 502,201,202

MATH 221/253H

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-12	/60
13	/10
14	/10
15	/10
16	/10
Total	/100

1. Find the area of the triangle whose vertices are

$$P = (2,4,-3), Q = (3,4,-2) \text{ and } R = (0,6,-3).$$

- **a**. 12
- **b**. 6
- **c**. $2\sqrt{3}$
- **d**. $\sqrt{3}$
- **e**. 1

2. Which of the following is the hyperplane in \mathbb{R}^4 which contains the point P=(x,y,z,w)=(8,4,2,1) and is tangent to the vectors $\vec{p}=\langle 2,1,0,0\rangle$ $\vec{q}=\langle 0,2,1,0\rangle$ and $\vec{r}=\langle 0,0,2,1\rangle$? HINT: What is the vector perpendicular to the hyperplane?

a.
$$8x + 4y + 2z + w = 85$$

b.
$$8x - 4y + 2z - w = 51$$

c.
$$x + 2y + 4z + 8w = 32$$

d.
$$x - 2y + 4z - 8w = 0$$

e.
$$x - y + z - w = 5$$

- **3**. The quadratic surface $x^2 + y^2 z^2 + 4x + 4y 6z = 0$ is
 - a. a cone.
 - **b**. an elliptic hyperboloid
 - **c**. a hyperbolic paraboloid
 - d. a hyperboloid of 1 sheet
 - e. a hyperboloid of 2 sheets

4. The plot at the right is the graph of which equation?

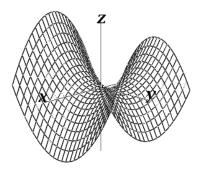
a.
$$z = x^2 - y^2$$

b.
$$z = -x^2 + y^2$$

c.
$$z^2 = x^2 - y^2$$

d.
$$z^2 = -x^2 + y^2$$

e.
$$z^2 - x^2 - y^2 = 1$$



- **5**. An airplane is travelling due South with constant speed and constant altitude as it flies over College Station. Since its path is part of a circle around the earth, its acceleration points directly toward the center of the earth. In which direction does it binormal \hat{B} point?
 - **a**. Up
 - **b**. North
 - c. South
 - d. East
 - e. West

- **6.** For the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ which of the following is FALSE?
 - **a.** $\vec{v} = \langle -4\sin t, 3, 4\cos t \rangle$
 - **b**. $\vec{a} = \langle -4\cos t, 0, -4\sin t \rangle$
 - **c**. $|\vec{v}| = 25$
 - **d**. Arc length between t=0 and $t=2\pi$ is 10π
 - **e**. $a_T = 0$

- 7. A wire in the shape of the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ has linear mass density $\rho = y + z$. Find its total mass between t = 0 and $t = 2\pi$.
 - **a**. $30\pi^2$
 - **b**. $6\pi^2$
 - **c**. 30π
 - **d**. 12π
 - **e**. 6π

- **8**. Find the work done to move an object along the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ between t = 0 and $t = 2\pi$ by the force $\vec{F} = \langle z, 0, -x \rangle$?
 - **a**. 32π
 - **b**. 25π
 - **c**. $-25\pi^2$
 - **d**. -25π
 - **e**. -32π

- **9**. Find the plane tangent to the graph of $z = xe^y$ at the point (2,0). Its z-intercept is
 - **a**. −*e*
 - **b**. -2
 - **c**. 0
 - **d**. 2
 - **e**. *e*

- **10**. Find the plane tangent to the graph of $xz^3 + zy^2 + yx^4 = 42$ at the point (1,2,0). Its z-intercept is
 - **a**. $\frac{2}{5}$
 - **b**. $\frac{4}{5}$
 - **c**. $\frac{5}{4}$
 - **d**. $\frac{5}{2}$
 - **e**. 10

- 11. Hans Duo is currently at (x, y, z) = (3, 2, 1) and flying the Milenium Eagle through a deadly polaron field whose density is $\rho = x^2z + yz^2$. In what unit vector direction should he travel to **reduce** the density as fast as possible?
 - **a**. $\langle -6, -1, -13 \rangle$
 - **b**. $\frac{1}{\sqrt{206}}\langle -6, -1, -13 \rangle$
 - **c**. $\langle 6, 1, 13 \rangle$
 - **d**. $\frac{1}{\sqrt{206}}\langle -6, 1, -13 \rangle$
 - **e**. $\frac{1}{\sqrt{206}} \langle 6, -1, 13 \rangle$

- **12**. The point (x,y) = (9,3) is a critical point of the function $f(x,y) = x^2 2xy^2 + 4y^3$. Use the Second Derivative Test to classify this critical point.
 - a. local minimum
 - b. local maximum
 - c. saddle point
 - d. TEST FAILS

Work Out: (10 points each. Part credit possible. Show all work.)

13. Find the scalar and vector projections of the vector $\vec{a} = \langle 2, -1, 2 \rangle$ along the vector $\vec{b} = \langle 1, 2, -2 \rangle$.

14. The pressure, P, volume, V, and temperature, T, of an ideal gas are related by $P=\frac{kT}{V}$ for some constant k. For a certain sample $k=10\frac{\text{cm}^3\text{-atm}}{^{\circ}\text{K}}$. At a certain instant, the volume and temperature are $V=2000\,\text{cm}^3$, and $T=300\,^{\circ}\text{K}$, and are increasing at $\frac{dV}{dt}=40\frac{\text{cm}^3}{\text{sec}}$, and $\frac{dT}{dt}=5\frac{^{\circ}\text{K}}{\text{sec}}$.

At that instant, what is the pressure, is it increasing or decreasing and at what rate?

15. If two resistors, with resistances R_1 and R_2 , are arranged in parallel, the total resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

If $R_1=4\Omega$ and $R_2=6\Omega$ and the uncertainty in the measurement of R_1 is $\Delta R_1=0.03\Omega$ and for R_2 is $\Delta R_2=0.02\Omega$. Find R and use differentials to estimate the uncertainty in the measurement of R.

16. Find the point(s) on the surface $z^2 = 46 - 4x - 2y$ which are closest to the origin. HINT: Explain why you can minimize the square of the distance instead of the distance. Use the Second Derivative Test to check it is a local minimum.