Name \qquad ID \qquad
MATH 221/253H
Exam 1
Fall 2012
Sections 502,201,202
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1. Find the area of the triangle whose vertices are

$$
P=(2,4,-3), \quad Q=(3,4,-2) \quad \text { and } \quad R=(0,6,-3) .
$$

a. 12
b. 6
c. $2 \sqrt{3}$
d. $\sqrt{3}$ Correct Choice
e. 1

SOLUTION: $\quad \overrightarrow{P Q}=Q-P=\langle 1,0,1\rangle \quad \overrightarrow{P R}=R-P=\langle-2,2,0\rangle$
$\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & 1 \\ -2 & 2 & 0\end{array}\right|=\hat{\imath}(0-2)-\hat{\jmath}(0--2)+\hat{k}(2-0)=\langle-2,-2,2\rangle$
$A=\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|=\frac{1}{2} \sqrt{4+4+4}=\sqrt{3}$
2. Which of the following is the hyperplane in \mathbb{R}^{4} which contains the point $P=(x, y, z, w)=(8,4,2,1)$ and is tangent to the vectors $\vec{p}=\langle 2,1,0,0\rangle \quad \vec{q}=\langle 0,2,1,0\rangle$ and $\vec{r}=\langle 0,0,2,1\rangle$?
HINT: What is the vector perpendicular to the hyperplane?
a. $8 x+4 y+2 z+w=85$
b. $8 x-4 y+2 z-w=51$
c. $x+2 y+4 z+8 w=32$
d. $x-2 y+4 z-8 w=0 \quad$ Correct Choice
e. $x-y+z-w=5$

SOLUTION:

$$
\begin{aligned}
& \vec{N}=\perp(\vec{p}, \vec{q}, \vec{r})=\left|\begin{array}{cccc}
\hat{\imath} & \hat{\jmath} & \hat{k} & \hat{l} \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right|=\hat{\imath}\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right|+\hat{k}\left|\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right|-\hat{\imath}\left|\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right| \\
& \vec{N}=\hat{\imath}(1-0)-\hat{\jmath}(2-0)+\hat{k}(4-0)-\hat{l}(8-0)=\langle 1,2,4,8\rangle \\
& \vec{N} \cdot X=\vec{N} \cdot P
\end{aligned}
$$

3. The quadratic surface $x^{2}+y^{2}-z^{2}+4 x+4 y-6 z=0$ is
a. a cone.
b. an elliptic hyperboloid
c. a hyperbolic paraboloid
d. a hyperboloid of 1 sheet
e. a hyperboloid of 2 sheets Correct Choice

SOLUTION: We complete the squares to get
$(x+2)^{2}+(y+2)^{2}-(z+3)^{2}=4+4-9=-1$
Since there are squares on each variable with different signs and non-zero on the right, it is a hyperboloid. Rearranging, we have
$(z+3)^{2}=1+(x+2)^{2}+(y+2)^{2}$
So $(z+3)^{2}$ can never be zero and it must be a hyperboloid of 2 sheets.
4. The plot at the right is the graph of which equation?
a. $z=x^{2}-y^{2}$
b. $z=-x^{2}+y^{2} \quad$ Correct Choice
c. $z^{2}=x^{2}-y^{2}$
d. $z^{2}=-x^{2}+y^{2}$
e. $z^{2}-x^{2}-y^{2}=1$

SOLUTION: The saddle surface is a hyperbolic paraboloid: (a) or (b).
Since it goes down in the x-direction and up in the y-direction, it is (a).
5. An airplane is travelling due South with constant speed and constant altitude as it flies over College Station. Since its path is part of a circle around the earth, its acceleration points directly toward the center of the earth. In which direction does it binormal \hat{B} point?
a. Up
b. North
c. South
d. East Correct Choice
e. West

SOLUTION: \vec{v} is South. \vec{a} is Down.
So $\hat{B}=\frac{\hat{v} \times \hat{a}}{|\hat{v} \times \hat{a}|}$ points East by the right hand rule.
6. For the curve $\vec{r}(t)=(4 \cos t, 3 t, 4 \sin t)$ which of the following is FALSE?
a. $\vec{v}=\langle-4 \sin t, \quad 3, \quad 4 \cos t\rangle$
b. $\vec{a}=\langle-4 \cos t, \quad 0, \quad-4 \sin t\rangle$
c. $|\vec{v}|=25 \quad$ Correct Choice
d. Arc length between $t=0$ and $t=2 \pi$ is 10π
e. $a_{T}=0$

SOLUTION: \vec{v} and \vec{a} are correct by differentiation.
$|\vec{v}|=\sqrt{9+16 \sin ^{2} t+16 \cos ^{2} t}=5 \quad a_{T}=\frac{d|\vec{v}|}{d t}=0$
$L=\int d s=\int|\vec{v}| d t=\int_{0}^{2 \pi} 5 d t=[5 t]_{0}^{2 \pi}=10 \pi$
7. A wire in the shape of the curve $\vec{r}(t)=(4 \cos t, \quad 3 t, \quad 4 \sin t)$ has linear mass density $\rho=y+z$. Find its total mass between $t=0$ and $t=2 \pi$.
a. $30 \pi^{2}$ Correct Choice
b. $6 \pi^{2}$
c. 30π
d. 12π
e. 6π

SOLUTION: $\quad M=\int \rho d s=\int(y+z)|\vec{v}| d t=\int_{0}^{2 \pi}(3 t+4 \sin t) 5 d t=\left[\frac{15 t^{2}}{2}-20 \cos t\right]_{0}^{2 \pi}=30 \pi^{2}$
8. Find the work done to move an object along the curve $\vec{r}(t)=(4 \cos t, 3 t, 4 \sin t)$ between $t=0$ and $t=2 \pi$ by the force $\vec{F}=\langle z, 0,-x\rangle$?
a. 32π
b. 25π
c. $-25 \pi^{2}$
d. -25π
e. -32π Correct Choice

SOLUTION: $\vec{F}(\vec{r}(t))=\langle 4 \sin t, \quad 0, \quad-4 \cos t\rangle \quad \vec{v}=\langle-4 \sin t, \quad 3, \quad 4 \cos t\rangle$
$W=\int \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{v} d t=\int_{0}^{2 \pi}\left(-16 \sin ^{2} t-16 \cos ^{2} t\right) d t=\int_{0}^{2 \pi}-16 d t=-32 \pi$
9. Find the plane tangent to the graph of $z=x e^{y}$ at the point $(2,0)$. Its z-intercept is
a. $-e$
b. -2
c. 0 Correct Choice
d. 2
e. e

SOLUTION:
$f=x e^{y}$
$f(2,0)=2$
$z=f(2,0)+f_{x}(2,0)(x-2)+f_{y}(2,0)(y-0)$
$f_{x}=e^{y}$
$f_{x}(2,0)=1$

$$
=2+1(x-2)+2 y
$$

$f_{y}=x e^{y}$
$f_{y}(2,0)=2$
When $x=y=0$, we have $z=2+(-2)=0$.
10. Find the plane tangent to the graph of $x z^{3}+z y^{2}+y x^{4}=42$ at the point $(1,2,0)$. Its z-intercept is
a. $\frac{2}{5}$
b. $\frac{4}{5}$
c. $\frac{5}{4}$
d. $\frac{5}{2}$ Correct Choice
e. 10

SOLUTION: $\quad F(x, y, z)=x z^{3}+z y^{2}+y x^{4} \quad \vec{\nabla} F=\left\langle z^{3}+4 y x^{3}, 2 z y+x^{4}, 3 x z^{2}+y^{2}\right\rangle$
$\vec{N}=|\vec{\nabla} F|_{(1,2,0)}=\langle 8,1,4\rangle \quad \vec{N} \cdot X=\vec{N} \cdot P \quad 8 x+y+4 z=8 \cdot 1+2+4 \cdot 0=10$
When $x=y=0$, we have $z=\frac{5}{2}$.
11. Hans Duo is currently at $(x, y, z)=(3,2,1)$ and flying the Milenium Eagle through a deadly polaron field whose density is $\rho=x^{2} z+y z^{2}$. In what unit vector direction should he travel to reduce the density as fast as possible?
a. $\langle-6,-1,-13\rangle$
b. $\frac{1}{\sqrt{206}}\langle-6,-1,-13\rangle \quad$ Correct Choice
c. $\langle 6,1,13\rangle$
d. $\frac{1}{\sqrt{206}}\langle-6,1,-13\rangle$
e. $\frac{1}{\sqrt{206}}\langle 6,-1,13\rangle$

SOLUTION: $\quad \vec{\nabla} \rho=\left\langle 2 x z, z^{2}, x^{2}+2 y z\right\rangle \quad \vec{v}=-\left.\vec{\nabla} \rho\right|_{(3,2,1)}=\langle-6,-1,-13\rangle$

$$
|\vec{v}|=\sqrt{36+1+169}=\sqrt{206} \quad \hat{v}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{206}}\langle-6,-1,-13\rangle
$$

12. The point $(x, y)=(9,3)$ is a critical point of the function $f(x, y)=x^{2}-2 x y^{2}+4 y^{3}$. Use the Second Derivative Test to classify this critical point.
a. local minimum
b. local maximum
c. saddle point Correct Choice
d. TEST FAILS

SOLUTION:
$f_{x}=2 x-2 y^{2} \quad \Rightarrow \quad f_{x}(9,3)=18-18=0 \quad$ Checked
$f_{y}=-4 x y+12 y^{2} \quad \Rightarrow \quad f_{y}(9,3)=-4 \cdot 27+12 \cdot 9=0 \quad$ Checked
$f_{x x}=2 \quad \Rightarrow \quad f_{x x}(9,3)=2$
$f_{y y}=-4 x+24 y \quad \Rightarrow \quad f_{y y}(9,3)=-36+72=36$
$f_{x y}=-4 y \quad \Rightarrow \quad f_{x y}(9,3)=-12$
$D=f_{x x} f_{y y}-f_{x y}{ }^{2}=2 \cdot 36-12^{2}=-72$
Since $D<0$ it is a saddle point.
13. Find the scalar and vector projections of the vector $\vec{a}=\langle 2,-1,2\rangle$ along the vector $\vec{b}=\langle 1,2,-2\rangle$.

SOLUTION: $\vec{a} \cdot \vec{b}=2-2-4=-4 \quad \vec{b} \cdot \vec{b}=4+1+4=9 \quad|\vec{b}|=3$
$\operatorname{comp}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{-4}{3}$
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}=\frac{-4}{9}\langle 1,2,-2\rangle=\left\langle\frac{-4}{9}, \frac{-8}{9}, \frac{8}{9}\right\rangle$
14. The pressure, P, volume, V, and temperature, T, of an ideal gas are related by

$$
P=\frac{k T}{V} \quad \text { for some constant } \quad k . \text { For a certain sample } k=10 \frac{\mathrm{~cm}^{3}-\mathrm{atm}}{{ }^{\circ} \mathrm{K}} .
$$

At a certain instant, the volume and temperature are $V=2000 \mathrm{~cm}^{3}$, and $T=300^{\circ} \mathrm{K}$, and are increasing at $\frac{d V}{d t}=40 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$, and $\frac{d T}{d t}=5 \frac{{ }^{\circ} \mathrm{K}}{\mathrm{sec}}$.
At that instant, what is the pressure, is it increasing or decreasing and at what rate?
SOLUTION: $\quad P=\frac{k T}{V}=\frac{10 \cdot 300}{2000} \frac{\mathrm{~cm}^{3}-\mathrm{atm}}{{ }^{\circ} \mathrm{K}} \frac{{ }^{\circ} \mathrm{K}}{\mathrm{cm}^{3}}=1.5 \mathrm{~atm}$
$\frac{d P}{d t}=\frac{\partial P}{\partial V} \frac{d V}{d t}+\frac{\partial P}{\partial T} \frac{d T}{d t}=\frac{-k T}{V^{2}} \frac{d V}{d t}+\frac{k}{V} \frac{d T}{d t}=\frac{-10 \cdot 300}{2000^{2}} \cdot 40+\frac{10}{2000} 5=-\frac{5}{1000}=-0.005 \frac{\mathrm{~atm}}{\mathrm{sec}}$
Since $\frac{d P}{d t}$ is negative, the pressure is decreasing.
15. If two resistors, with resistances R_{1} and R_{2}, are arranged in parallel, the total resistance R is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If $R_{1}=4 \Omega$ and $R_{2}=6 \Omega$ and the uncertainty in the measurement of R_{1} is $\Delta R_{1}=0.03 \Omega$ and for R_{2} is $\Delta R_{2}=0.02 \Omega$. Find R and use differentials to estimate the uncertainty in the measurment of R.

SOLUTION: $\quad R=\frac{4 \cdot 6}{4+6}=2.4 \Omega$.

$$
\begin{aligned}
\Delta R & =\frac{\partial R}{\partial R_{1}} \Delta R_{1}+\frac{\partial R}{\partial R_{2}} \Delta R_{2}=\frac{\left(R_{1}+R_{2}\right) R_{2}-R_{1} R_{2}(1)}{\left(R_{1}+R_{2}\right)^{2}} \Delta R_{1}+\frac{\left(R_{1}+R_{2}\right) R_{1}-R_{1} R_{2}(1)}{\left(R_{1}+R_{2}\right)^{2}} \Delta R_{2} \\
& =\frac{\left(R_{2}\right)^{2}}{\left(R_{1}+R_{2}\right)^{2}} \Delta R_{1}+\frac{\left(R_{1}\right)^{2}}{\left(R_{1}+R_{2}\right)^{2}} \Delta R_{2}=\frac{6^{2}}{(4+6)^{2}} .03+\frac{4^{2}}{(4+6)^{2}} .02=\frac{1.08+0.32}{100}=0.014 \Omega
\end{aligned}
$$

16. Find the point(s) on the surface $z^{2}=46-4 x-2 y$ which are closest to the origin.

HINT: Explain why you can minimize the square of the distance instead of the distance.
Use the Second Derivative Test to check it is a local minimum.
SOLUTION: We need to minimize the distance from the point $(x, y, \pm \sqrt{46-4 x-2 y})$ to the origin.
We can minimize the square of the distance because as the distance decreases, so does it's square.
So we minimize $f=x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+46-4 x-2 y$
$f_{x}=2 x-4=0 \quad \Rightarrow \quad x=2$
$f_{y}=2 y-2=0 \quad \Rightarrow \quad y=1 \quad \Rightarrow \quad z= \pm \sqrt{46-4 x-2 y}= \pm \sqrt{36}= \pm 6$
So the points are $(2,1,6)$ and $(2,1,-6)$
$f_{x x}=2>0 \quad f_{y y}=2 \quad f_{x y}=0 \quad D=f_{x x} f_{y y}-f_{x y}{ }^{2}=4>0 \quad$ local minimum

