Name_____ ID____

MATH 251

Quiz 3

Fall 2005

Sections 503

P. Yasskin

1-4	/20
5	/ 5
Total	/25

Multiple Choice & Work Out: (5 points each)

1. For the function $f(x,y) = x\cos(xy)$ which partial derivative is incorrect?

a.
$$\frac{\partial f}{\partial x} = \cos(xy) - xy\sin(xy)$$

b.
$$\frac{\partial f}{\partial y} = -x^2 \sin(xy)$$

c.
$$\frac{\partial^2 f}{\partial x^2} = -y \sin(xy) - x^2 y \cos(xy)$$

d.
$$\frac{\partial^2 f}{\partial x \partial y} = -2x \sin(xy) - x^2 y \cos(xy)$$

e.
$$\frac{\partial^2 f}{\partial y \partial x} = -2x \sin(xy) - x^2 y \cos(xy)$$

2. Find the equation of the plane tangent to $z = x^2y^3$ at the point (2,1,4).

a.
$$z = -4x - 12y + 24$$

b.
$$z = -4x - 12y + 4$$

c.
$$z = 4x + 12y + 4$$

d.
$$z = 4x + 12y - 8$$

e.
$$z = 4x + 12y - 16$$

- 3. The plane tangent to $z = f(x,y) = xy^2 x^2$ at the point (1,2,-3) is $z = f_{tan}(x,y) = 3 + 2(x-1) + 4(y-2)$. Use this information to approximate f(1,1,1.8).
 - **a.** 2
 - **b.** 2.4
 - **c.** 3.6
 - **d.** 4
 - **e.** 12.4
- **4.** Consider a function g(x,y). If g(2,3)=4, $\frac{\partial g}{\partial x}=5$, and $\frac{\partial g}{\partial y}=1$, estimate g(1.9,3.3).
 - **a.** 3.8
 - **b.** 4.2
 - **c.** 4.8
 - **d.** 10
 - **e.** 16.8
- 5. The mass of a body is $M=\rho V$ where ρ is its density and V is its volume. If the density is measured to be $\rho=1.2\frac{\rm g}{\rm cm^3}$ with an uncertainty of $\Delta\rho=\pm0.01\frac{\rm g}{\rm cm^3}$ and the volume is measured to be $V=2\,{\rm cm^3}$ with an uncertainty of $\Delta V=\pm0.02\,{\rm cm^3}$, then the mass is $M=2.4\,{\rm g}$. Use differentials to estimate the uncertainty in the mass. NOTE: The uncertainty in a quantity is its differential.