			1-9	/45
Name	ID		10	/20
MATH 251	Exam 1	Spring 2006	11	/15
Sections 506		P. Yasskin	12	/10
Multiple Choice: (5 points each. No part credit.)			13	/15
			Total	/105

1. A fly travels along the path $\vec{r}(t) = (3\sin t, -4\sin t, 5\cos t)$. Find the arc length traveled by the fly between (3, -4, 0) and (0, 0, -5).

- **a**. $\frac{\pi}{2}$ **b**. π
- **c**. $\frac{3\pi}{2}$
- **d**. 2π
- **e**. $\frac{5\pi}{2}$

- **2**. Find the unit binormal \hat{B} to the curve $\vec{r}(t) = (3 \sin t, -4 \sin t, 5 \cos t)$.
 - **a.** $\left(\frac{3}{5}, \frac{-4}{5}, 0\right)$ **b.** $\left(\frac{3}{5}, \frac{4}{5}, 0\right)$ **c.** $\left(\frac{4}{5}, \frac{-3}{5}, 0\right)$ **d.** $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$ **e.** $\left(\frac{-3}{5}, \frac{4}{5}, 0\right)$

- **3**. Find the vector projection of the vector $\vec{u} = \langle 1, -2, 2 \rangle$ onto the vector $\vec{v} = \langle -1, 1, 1 \rangle$.
 - **a.** $\left\langle \frac{-1}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle$ **b.** $\left\langle \frac{1}{3}, \frac{-1}{3}, \frac{-1}{3} \right\rangle$ **c.** $\left\langle \frac{1}{9}, \frac{-1}{9}, \frac{-1}{9} \right\rangle$ **d.** $\left\langle \frac{-1}{9}, \frac{2}{9}, \frac{-2}{9} \right\rangle$ **e.** $\left\langle \frac{1}{9}, \frac{-2}{9}, \frac{2}{9} \right\rangle$

- **4**. Find the plane parallel to 4x 3y + 2z = 5 which passes through the point P = (1, 2, 3). What is the *z*-intercept of this plane?
 - **a**. 2
 - **b**. 4
 - **c**. 6
 - **d**. 8
 - **e**. 10

- 5. The plot at the right is the contour plot of which function?
 - **a**. The hyperbolic paraboloid $z = x^2 y^2$
 - **b**. The hyperbolic paraboloid z = xy
 - **c**. The hyperboloid $z = \sqrt{1 + x^2 + y^2}$
 - **d**. The cone $z = \sqrt{(x-1)^2 + y^2}$
 - **e**. The elliptic paraboloid $z = x^2 + (y-1)^2$

6. If $r = \sqrt{x^2 + y^2}$, find $\frac{\partial^2 r}{\partial x \partial y}(3, 4)$. a. $\frac{12}{5}$ b. $\frac{12}{25}$ c. $\frac{12}{125}$ d. $\frac{-12}{125}$ e. $\frac{-12}{5}$

7. The graph of a function z = f(x, y) passes through the point (2,4,8) and has $f_x(2,4) = -3$ and $f_y(2,4) = 5$. Use the linear approximation to approximate f(2,2,3,9)

- **a**. -1.1
- **b**. 1.1
- **c**. 6.9
- **d**. 7.9
- **e**. 9.1

- 8. Duke Skywater is travelling through the galaxy. At the present time he is at the point with galactic coordinates P = (40, 25, 53) (in lightyears), and his velocity is $\vec{v} = (.1, -.2, .3)$ (in lightyears /year). He measures the polaron density to be U = 4300 polarons/cm³ and its gradient to be $\vec{\nabla}U = (3, 2, 1)$ polarons/cm³/lightyear. Find the rate $\frac{dU}{dt}$ at which Duke sees the polaron density changing (in polarons/cm³/year).
 - **a**. 0.2
 - **b**. 1.0
 - **c**. 223
 - **d**. 223.2
 - **e**. 224

- **9**. The density of carbon monoxide in a room is given by $\delta = z \ln(9 + x^2 y^2)$. If you start at the point (3,4,2), in what direction should you move to *decrease* the carbon monoxide density as fast as possible?
 - **a**. $(-6, -8, -\ln 2)$
 - **b**. $(-6, 8, -\ln 2)$
 - **c**. $(6, -8, -\ln 2)$
 - **d**. $(-6, 8, \ln 2)$
 - **e**. $(6, -8, \ln 2)$

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. Find the equation of the plane tangent to each of the following surfaces:
 - **a**. (10 points) $z = f(x, y) = xe^{xy}$ at (x, y) = (2, 0)

b. (10 points) $xe^{yz} + ye^{xz} = 5$ at (x, y, z) = (2, 3, 0)

11. (15 points) The radius of a cylinder is currently r = 5 cm and its height is h = 10 cm. Its radius is increasing at $\frac{dr}{dt} = 0.3 \frac{\text{cm}}{\text{sec}}$ and its height is decreasing at $\frac{dh}{dt} = -0.2 \frac{\text{cm}}{\text{sec}}$. Is its volume increasing or decreasing and at what rate?

12. (10 points) If $z = x^2 y^3$ where x = x(u, v) and y = y(u, v) satisfy x(3,4) = 2 $\frac{\partial x}{\partial u}(3,4) = 5$ $\frac{\partial x}{\partial v}(3,4) = 6$ y(3,4) = 1 $\frac{\partial y}{\partial u}(3,4) = 7$ $\frac{\partial y}{\partial v}(3,4) = 8$ Find $\frac{\partial z}{\partial v}\Big|_{(u,v)=(3,4)}$. **13.** (15 points) Find the point on the ellipsoid $\frac{x^2}{16} + \frac{y^2}{4} + z^2 = 3$ at which the function f = -x - 2y + 4z is a minimum.

You may use any method but Lagrange multipliers is easier than eliminating a variable.