Name \qquad ID \qquad
MATH 251
Exam 1
Spring 2006
Sections 506
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$
10	$/ 20$
11	$/ 15$
12	$/ 10$
13	$/ 15$
Total	$/ 105$

1. A fly travels along the path $\vec{r}(t)=(3 \sin t,-4 \sin t, 5 \cos t)$.

Find the arc length traveled by the fly between $(3,-4,0)$ and $(0,0,-5)$.
a. $\frac{\pi}{2}$
b. π
c. $\frac{3 \pi}{2}$
d. 2π
e. $\frac{5 \pi}{2}$
2. Find the unit binormal \hat{B} to the curve $\vec{r}(t)=(3 \sin t,-4 \sin t, 5 \cos t)$.
a. $\left(\frac{3}{5}, \frac{-4}{5}, 0\right)$
b. $\left(\frac{3}{5}, \frac{4}{5}, 0\right)$
c. $\left(\frac{4}{5}, \frac{-3}{5}, 0\right)$
d. $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$
e. $\left(\frac{-3}{5}, \frac{4}{5}, 0\right)$
3. Find the vector projection of the vector $\vec{u}=\langle 1,-2,2\rangle$ onto the vector $\vec{v}=\langle-1,1,1\rangle$.
a. $\left\langle\frac{-1}{3}, \frac{1}{3}, \frac{1}{3}\right\rangle$
b. $\left\langle\frac{1}{3}, \frac{-1}{3}, \frac{-1}{3}\right\rangle$
c. $\left\langle\frac{1}{9}, \frac{-1}{9}, \frac{-1}{9}\right\rangle$
d. $\left\langle\frac{-1}{9}, \frac{2}{9}, \frac{-2}{9}\right\rangle$
e. $\left\langle\frac{1}{9}, \frac{-2}{9}, \frac{2}{9}\right\rangle$
4. Find the plane parallel to $4 x-3 y+2 z=5$ which passes through the point $P=(1,2,3)$. What is the z-intercept of this plane?
a. 2
b. 4
c. 6
d. 8
e. 10
5. The plot at the right is the contour plot of which function?
a. The hyperbolic paraboloid
$z=x^{2}-y^{2}$
b. The hyperbolic paraboloid $z=x y$
c. The hyperboloid
$z=\sqrt{1+x^{2}+y^{2}}$
d. The cone
$z=\sqrt{(x-1)^{2}+y^{2}}$
e. The elliptic paraboloid
$z=x^{2}+(y-1)^{2}$

6. If $r=\sqrt{x^{2}+y^{2}}$, find $\frac{\partial^{2} r}{\partial x \partial y}(3,4)$.
a. $\frac{12}{5}$
b. $\frac{12}{25}$
c. $\frac{12}{125}$
d. $\frac{-12}{125}$
e. $\frac{-12}{5}$
7. The graph of a function $z=f(x, y)$ passes through the point $(2,4,8)$ and has $f_{x}(2,4)=-3$ and $f_{y}(2,4)=5$. Use the linear approximation to approximate $f(2.2,3.9)$
a. -1.1
b. 1.1
c. 6.9
d. 7.9
e. 9.1
8. Duke Skywater is travelling through the galaxy. At the present time he is at the point with galactic coordinates $P=(40,25,53)$ (in lightyears), and his velocity is $\vec{v}=(.1,-.2, .3) \quad$ (in lightyears /year). He measures the polaron density to be $U=4300$ polarons $/ \mathrm{cm}^{3}$ and its gradient to be $\nabla U=(3,2,1)$ polarons $/ \mathrm{cm}^{3} / l i g h t y e a r$. Find the rate $\frac{d U}{d t}$ at which Duke sees the polaron density changing (in polarons/cm³/year).
a. 0.2
b. 1.0
c. 223
d. 223.2
e. 224
9. The density of carbon monoxide in a room is given by $\delta=z \ln \left(9+x^{2}-y^{2}\right)$. If you start at the point $(3,4,2)$, in what direction should you move to decrease the carbon monoxide density as fast as possible?
a. $(-6,-8,-\ln 2)$
b. $(-6,8,-\ln 2)$
c. $(6,-8,-\ln 2)$
d. $(-6,8, \ln 2)$
e. $(6,-8, \ln 2)$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. Find the equation of the plane tangent to each of the following surfaces:
a. (10 points) $z=f(x, y)=x e^{x y} \quad$ at $\quad(x, y)=(2,0)$
b. (10 points) $x e^{y z}+y e^{x z}=5 \quad$ at $\quad(x, y, z)=(2,3,0)$
11. (15 points) The radius of a cylinder is currently $r=5 \mathrm{~cm}$ and its height is $h=10 \mathrm{~cm}$. Its radius is increasing at $\frac{d r}{d t}=0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$ and its height is decreasing at $\frac{d h}{d t}=-0.2 \frac{\mathrm{~cm}}{\mathrm{sec}}$. Is its volume increasing or decreasing and at what rate?
12. (10 points) If $z=x^{2} y^{3}$ where $x=x(u, v)$ and $y=y(u, v)$ satisfy

$$
\begin{array}{lll}
x(3,4)=2 & \frac{\partial x}{\partial u}(3,4)=5 & \frac{\partial x}{\partial v}(3,4)=6 \\
y(3,4)=1 & \frac{\partial y}{\partial u}(3,4)=7 & \frac{\partial y}{\partial v}(3,4)=8
\end{array}
$$

Find $\left.\quad \frac{\partial z}{\partial v}\right|_{(u, v)=(3,4)}$.
13. (15 points) Find the point on the ellipsoid $\frac{x^{2}}{16}+\frac{y^{2}}{4}+z^{2}=3$ at which the function $f=-x-2 y+4 z$ is a minimum.
You may use any method but Lagrange multipliers is easier than eliminating a variable.

