Name	ID		1-12	/60
MATH 251	Final Exam	Spring 2006	13	/20
Sections 506		P. Yasskin	14	/10
Multiple Choice: (5 points each. No part credit.)			15	/15
			Total	/105

- 1. Let *L* be the line $\vec{r}(t) = (6 + 7t, -3 4t, 5 2t)$. Find the equation of the plane perpenducular to *L* that contains the point (3, -5, 2).
 - **a**. 3(x-7) 5(y+4) + 2(z+2) = 0
 - **b.** 3(x-7) + 5(y+4) + 2(z+2) = 0
 - **c**. 7(x-3) 4(y+5) 2(z-2) = 0
 - **d**. 7(x-3) + 4(y+5) 2(z-2) = 0
 - **e**. 6(x-3) 3(y+5) + 5(z-2) = 0
- **2**. Find the equation of the plane tangent to the graph of $z = x \sin y$ at $(x, y) = \left(2, \frac{\pi}{3}\right)$.
 - **a.** $z = \frac{1}{2}x + \sqrt{3}y \frac{\pi}{\sqrt{3}} + \sqrt{3} 1$ **b.** $z = \frac{1}{2}x + \sqrt{3}y - \frac{\pi}{\sqrt{3}} + \sqrt{3}$ **c.** $z = \frac{1}{2}x + \sqrt{3}y + \sqrt{3} - 1$ **d.** $z = \frac{\sqrt{3}}{2}x + y - \frac{\pi}{3}$ **e.** $z = \frac{\sqrt{3}}{2}x + y + \sqrt{3}$

3. Find the equation of the line perpendicular to the surface $xy + z^2 = 6$ at the point (1,2,2).

a.
$$x = 2 + t, y = -1 + 2t, z = 4 + 2t$$

b. $x = 2 + t, y = -1 - 2t, z = 4 + 2t$
c. $x = 2 + t, y = 1 + 2t, z = 4 + 2t$
d. $x = 1 + 2t, y = 2 - t, z = 2 + 4t$
e. $x = 1 + 2t, y = 2 + t, z = 2 + 4t$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2 - 2y}{y - xy} =$$

a. -2
b. 0
c. 1
d. 2

- e. Does Not Exist
- 5. The radius and height of a cylinder are currently r = 10 cm and h = 6 cm. If the radius is increasing at $\frac{dr}{dt} = 2 \frac{\text{cm}}{\text{min}}$ and the volume is increasing at $\frac{dV}{dt} = 40\pi \frac{\text{cm}^3}{\text{min}}$, is the height increasing or decreasing and at what rate?
 - a. decreasing at $2 \frac{\text{cm}}{\text{min}}$ b. decreasing at $\frac{4}{5} \frac{\text{cm}}{\text{min}}$ c. increasing at $2 \frac{\text{cm}}{\text{min}}$ d. increasing at $\frac{4}{5} \frac{\text{cm}}{\text{min}}$ e. The height is constant.

- **6**. Han Duet is flying the Millenium Eagle through a radion field with density $\rho = z(x + y)$. He is currently located at (-4,3,5) in galactic coordinates. In what direction should he fly to decrease the radion density as fast as possible?
 - **a**. (-5, 5, 1)
 - **b**. (-5, -5, 1)
 - **c**. (5, 5, -1)
 - **d**. (28,-21,35)
 - **e**. (-28, 21, -35)
- 7. Han Duet is flying the Millenium Eagle through a radion field with density $\rho = z(x + y)$. He is currently located at (-4,3,5) in galactic coordinates and has velocity $\vec{v} = (0.2, -0.1, 0.3)$. What does he see as the time rate of change of the radion density?
 - **a**. 0.2
 - **b**. -0.2
 - **c**. 1.2
 - **d**. −1.2
 - **e**. 0.4
- 8. Find the volume below $z = 2x^2y$ above the region in the *xy*-plane bounded by y = 0, $y = x^2$ and x = 2.
 - **a**. $\frac{32}{5}$

 - **b**. $\frac{32}{3}$
 - **c**. $\frac{128}{7}$
 - **d**. 32
 - **e**. $\frac{512}{9}$

- 9. The graph of the polar curve $r = \sqrt{\sin(\theta)}$ is shown at the right. Find the area enclosed.
 - **a**. 1.2
 - **b**. 1.0
 - **c**. 0.8
 - **d**. $\frac{\pi}{3}$
 - **e**. $\frac{\pi}{4}$

10. Compute $\int_{(-1,0,-1)}^{(2,0,8)} \vec{F} \cdot d\vec{s}$ where $\vec{F} = (3x^2, 2y, 1)$ along the curve $\vec{r}(t) = (t\cos(\pi t), t^2\sin(\pi t), t^3\cos(\pi t)).$ HINT: Note $\vec{F} = \vec{\nabla}f$ where $f = x^3 + y^2 + z.$ **a.** 8 **b.** 9 **c.** 12

- **d**. 15
- **e**. 18

- **11.** Compute $\oint (\ln x 3xe^y) dx + (x^2e^y) dy$ along the closed curve which travels along the straight line from (0,0) to (1,0), along the straight line from (1,0) to (1,1) and along $y = x^2$ from (1,1) to (0,0).
 - **a**. 5 5*e*
 - **b**. 5*e* 5
 - **c**. $5 \frac{5}{2}e$
 - **d**. $\frac{5}{2}e 5$
 - e. Diverges

12. Compute $\iint_{\partial P} \vec{F} \cdot d\vec{S}$ over the complete

surface of the solid paraboloid

$$x^2 + y^2 \le z \le 4$$

with outward normal, for the vector field

$$\vec{F} = (x^3, y^3, x + y)$$

- **a**. $\frac{16\pi}{3}$
- **b**. $\frac{32\pi}{3}$
- **c**. 16π
- **d**. 32π
- **e**. 48π

Original problem had $\vec{F} = (x^3, y^3, z)$ and no correct answer. Problem thrown out.

13. (20 points) Verify Stokes' Theorem

$$\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{s}$$

for the vector field $\vec{F} = (-yz^2, xz^2, z^3)$ and the cone

 $z = \sqrt{x^2 + y^2}$ for $z \le 3$ oriented down and out.

Be sure to check and explain the orientations.

Use the following steps:

a. The conical surface may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$. Compute the surface integral:

Successively find: \vec{e}_r , \vec{e}_{θ} , \vec{N} , $\vec{\nabla} \times \vec{F}$, $\vec{\nabla} \times \vec{F} (\vec{R}(r,\theta))$, $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$

b. Parametrize the boundary circle ∂C and compute the line integral. Successively find: $\vec{r}(\theta)$, $\vec{v}(\theta)$, $\vec{F}(\vec{r}(\theta))$, $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.

14. (10 points) Find all critical points of $f(x, y) = xy - \frac{1}{3}x^3 - y^2$ and classify each of them as either a local minimum, a local maximum or a a saddle point. Justify your answers.

. (15 points) Find the mass and *z*-component of the center of mass of the solid hemisphere

$$0 \le x \le \sqrt{4 - y^2 - z^2}$$

if the density is given by $\delta = 3 + z$.

