Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 20$
14	$/ 10$
15	$/ 15$
Total	$/ 105$

1. Let L be the line $\vec{r}(t)=(6+7 t,-3-4 t, 5-2 t)$. Find the equation of the plane perpenducular to L that contains the point $(3,-5,2)$.
a. $3(x-7)-5(y+4)+2(z+2)=0$
b. $3(x-7)+5(y+4)+2(z+2)=0$
c. $7(x-3)-4(y+5)-2(z-2)=0$
d. $7(x-3)+4(y+5)-2(z-2)=0$
e. $6(x-3)-3(y+5)+5(z-2)=0$
2. Find the equation of the plane tangent to the graph of $z=x \sin y$ at $(x, y)=\left(2, \frac{\pi}{3}\right)$.
a. $z=\frac{1}{2} x+\sqrt{3} y-\frac{\pi}{\sqrt{3}}+\sqrt{3}-1$
b. $z=\frac{1}{2} x+\sqrt{3} y-\frac{\pi}{\sqrt{3}}+\sqrt{3}$
c. $z=\frac{1}{2} x+\sqrt{3} y+\sqrt{3}-1$
d. $z=\frac{\sqrt{3}}{2} x+y-\frac{\pi}{3}$
e. $z=\frac{\sqrt{3}}{2} x+y+\sqrt{3}$
3. Find the equation of the line perpendicular to the surface $x y+z^{2}=6$ at the point $(1,2,2)$.
a. $x=2+t, y=-1+2 t, z=4+2 t$
b. $x=2+t, y=-1-2 t, z=4+2 t$
c. $x=2+t, y=1+2 t, z=4+2 t$
d. $x=1+2 t, y=2-t, z=2+4 t$
e. $x=1+2 t, y=2+t, z=2+4 t$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}-2 y}{y-x y}=$
a. -2
b. 0
c. 1
d. 2
e. Does Not Exist
5. The radius and height of a cylinder are currently $r=10 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$. If the radius is increasing at $\frac{d r}{d t}=2 \frac{\mathrm{~cm}}{\mathrm{~min}}$ and the volume is increasing at $\frac{d V}{d t}=40 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}$, is the height increasing or decreasing and at what rate?
a. decreasing at $2 \frac{\mathrm{~cm}}{\mathrm{~min}}$
b. decreasing at $\frac{4}{5} \frac{\mathrm{~cm}}{\min }$
c. increasing at $2 \frac{\mathrm{~cm}}{\mathrm{~min}}$
d. increasing at $\frac{4}{5} \frac{\mathrm{~cm}}{\mathrm{~min}}$
e. The height is constant.
6. Han Duet is flying the Millenium Eagle through a radion field with density $\rho=z(x+y)$. He is currently located at $(-4,3,5)$ in galactic coordinates. In what direction should he fly to decrease the radion density as fast as possible?
a. $(-5,5,1)$
b. $(-5,-5,1)$
c. $(5,5,-1)$
d. $(28,-21,35)$
e. $(-28,21,-35)$
7. Han Duet is flying the Millenium Eagle through a radion field with density $\rho=z(x+y)$. He is currently located at $(-4,3,5)$ in galactic coordinates and has velocity $\vec{v}=(0.2,-0.1,0.3)$. What does he see as the time rate of change of the radion density?
a. 0.2
b. -0.2
c. 1.2
d. -1.2
e. 0.4
8. Find the volume below $z=2 x^{2} y$ above the region in the $x y$-plane bounded by $y=0$, $y=x^{2}$ and $x=2$.
a. $\frac{32}{5}$
b. $\frac{32}{3}$
c. $\frac{128}{7}$
d. 32
e. $\frac{512}{9}$
9. The graph of the polar curve $r=\sqrt{\sin (\theta)}$ is shown at the right. Find the area enclosed.
a. 1.2
b. 1.0
c. 0.8

d. $\frac{\pi}{3}$
e. $\frac{\pi}{4}$
10. Compute $\int_{(-1,0,-1)}^{(2,0,8)} \vec{F} \cdot d \vec{s}$ where $\vec{F}=\left(3 x^{2}, 2 y, 1\right)$ along the curve $\vec{r}(t)=\left(t \cos (\pi t), t^{2} \sin (\pi t), t^{3} \cos (\pi t)\right)$.

HINT: Note $\vec{F}=\vec{\nabla} f$ where $f=x^{3}+y^{2}+z$.
a. 8
b. 9
c. 12
d. 15
e. 18
11. Compute $\oint\left(\ln x-3 x e^{y}\right) d x+\left(x^{2} e^{y}\right) d y$ along the closed curve which travels along the straight line from $(0,0)$ to $(1,0)$, along the straight line from $(1,0)$ to $(1,1)$ and along $y=x^{2}$ from $(1,1)$ to $(0,0)$.
a. $5-5 e$
b. $5 e-5$
c. $5-\frac{5}{2} e$
d. $\frac{5}{2} e-5$
e. Diverges
12. Compute $\iint_{\partial P} \vec{F} \cdot d \vec{S}$ over the complete surface of the solid paraboloid

$$
x^{2}+y^{2} \leq z \leq 4
$$

with outward normal, for the vector field

$$
\vec{F}=\left(x^{3}, y^{3}, x+y\right)
$$

a. $\frac{16 \pi}{3}$
b. $\frac{32 \pi}{3}$
c. 16π
d. 32π
e. 48π

Original problem had $\vec{F}=\left(x^{3}, y^{3}, z\right)$ and no correct answer. Problem thrown out.
13. (20 points) Verify Stokes' Theorem

$$
\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}
$$

for the vector field $\vec{F}=\left(-y z^{2}, x z^{2}, z^{3}\right)$ and the cone $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 3$ oriented down and out.

Be sure to check and explain the orientations.

Use the following steps:
a. The conical surface may be parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.

Compute the surface integral:
Successively find: $\vec{e}_{r}, \quad \vec{e}_{\theta}, \vec{N}, \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(r, \theta)), \iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$
b. Parametrize the boundary circle ∂C and compute the line integral.

Successively find: $\vec{r}(\theta), \vec{v}(\theta), \vec{F}(\vec{r}(\theta)), \oint_{\partial C} \vec{F} \cdot d \vec{s}$.
14. (10 points) Find all critical points of $f(x, y)=x y-\frac{1}{3} x^{3}-y^{2}$ and classify each of them as either a local minimum, a local maximum or a a saddle point. Justify your answers.
15. (15 points) Find the mass and z-component of the center of mass of the solid hemisphere

$$
0 \leq x \leq \sqrt{4-y^{2}-z^{2}}
$$

if the density is given by $\delta=3+z$.

