Name
ID. \qquad

MATH 251

Sections 507

Exam 1
Fall 2006
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-11$	$/ 55$	14	$/ 12$
12	$/ 12$	15	$/ 12$
13	$/ 12$	16	$/ 12$
Total	103		

1. The vertices of a triangle are $P=(3,4,-5), \quad Q=(3,5,-4)$ and $R=(5,2,-5)$.

Find the angle at P.
a. 90°
b. 120°
c. 135°
d. 150°
e. 180°
2. Find the volume of the parallelepiped with edge vectors:

$$
\vec{a}=\langle 4,1,2\rangle \quad \vec{b}=\langle 2,2,1\rangle \quad \vec{c}=\langle 1,3,0\rangle
$$

a. -3
b. 0
c. $\sqrt{3}$
d. 3
e. 9
3. Consider the set of all points P whose distance from $(1,0,0)$ is 3 times its distance from $(-1,0,0)$. This set is a
a. sphere.
b. ellipsoid.
c. hyperboloid.
d. elliptic paraboloid.
e. hyperbolic paraboloid.
4. For the curve $\vec{r}(t)=\left(\sin ^{2} t, \quad \cos ^{2} t, \quad \sin ^{2} t-\cos ^{2} t\right) \quad$ which of the following is FALSE?
a. $\vec{v}=\langle 2 \sin t \cos t, \quad-2 \sin t \cos t, \quad 4 \sin t \cos t\rangle$
b. $|\vec{v}|=\sqrt{24} \sin t \cos t$
c. $\hat{T}=\left\langle\begin{array}{lll}\frac{2}{\sqrt{24}}, & \frac{-2}{\sqrt{24}}, & \frac{4}{\sqrt{24}}\end{array}\right\rangle$
d. $a_{T}=0$
e. $a_{N}=0$
5. For the curve $\vec{r}(t)=\left(\sin ^{2} t, \quad \cos ^{2} t, \quad \sin ^{2} t-\cos ^{2} t\right)$ compute the arc length between $\vec{r}(0)=\left(\begin{array}{lll}0, & 1, & -1\end{array}\right)$ and $\vec{r}\left(\frac{\pi}{2}\right)=\left(\begin{array}{lll}1, & 0, & 1\end{array}\right)$.
a. $\frac{1}{4} \sqrt{6}$
b. $\frac{1}{2} \sqrt{6}$
c. $\sqrt{6}$
d. $2 \sqrt{6}$
e. 4
6. The plot at the right represents which vector field?
a. $\vec{A}=\langle x, y\rangle$
b. $\vec{B}=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$
c. $\vec{C}=\langle y, x\rangle$
d. $\vec{D}=\left\langle\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{x}{\sqrt{x^{2}+y^{2}}}\right\rangle$

e. $\vec{E}=\langle x+y, x-y\rangle$
7. Describe the level surfaces of $f(x, y, z)=x^{2}-y^{2}-z^{2}$.
a. Elliptic Paraboloids
b. Elliptic and Hyperbolic Paraboloids
c. Hyperboloids of 1 -sheet only
d. Hyperboloids of 2 -sheets only
e. Hyperboloids of 1 -sheet or 2 -sheets
8. Find the plane tangent to the graph of $z=x e^{x y}$ at the point $(2,0)$. Its z-intercept is
a. 0
b. 2
c. -2
d. 4
e. -4
9. Find the plane tangent to the surface $x y z+z^{2}=28$ at the point $(4,3,2)$. Its z-intercept is
a. 0
b. 5
c. -5
d. 80
e. -80
10. Find the line normal to the surface $x y z+z^{2}=28$ at the point $(4,3,2)$. It intersects the $x y$-plane at
a. $(4,3,2)$
b. $(4,3,0)$
c. $\left(\frac{13}{4}, 2,0\right)$
d. $\left(\frac{19}{4}, 4,4\right)$
e. $\left(\frac{19}{4}, 4,0\right)$
11. The salt concentration in a region of sea water is $\rho=x y^{2} z^{3}$. A swimmer is located at $(3,2,1)$. In what direction should the swimmer swim to increase the salt concentration as fast as possible?
a. $\langle 4,-12,36\rangle$
b. $\langle-4,12,-36\rangle$
c. $\langle 4,12,36\rangle$
d. $\langle-4,-12,-36\rangle$
e. $\langle 4,-12,-36\rangle$

Do 4 of the following 5 problems. Cross out the one you do not want graded, here and on page 1. If you do not specify, \#12 will be dropped.
12. Which of the following functions satisfy the Laplace equation $f_{x x}+f_{y y}=0$? Show your work!
a. $f=x^{2}+y^{2}$
b. $f=x^{2}-y^{2}$
c. $f=x^{3}+3 x y^{2}$
d. $f=x^{3}-3 x y^{2}$
e. $f=e^{-x} \cos y+e^{-y} \cos x$
f. $f=e^{-x} \cos y-e^{-y} \cos x$
13. When two resistors with resistances R_{1} and R_{2} are connected in parallel, the net resistance R is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If R_{1} and R_{2} are measured as $R_{1}=2 \pm 0.01 \mathrm{ohms}$ and $R_{2}=3 \pm 0.04 \mathrm{ohms}$, then R can be calculated as $R=\frac{6}{5} \pm \Delta R$ ohms.
Use differentials to estimate the uncertainty ΔR in the computed value of R.
14. The average of a function f on a curve $\vec{r}(t)$ is $f_{\text {ave }}=\frac{\int f d s}{\int d s}$.

Find the average of $f(x, y)=x^{2}$ on the circle $x^{2}+y^{2}=9$.
HINTS: Parametrize the circle. $\quad \sin ^{2} A=\frac{1-\cos (2 A)}{2} \quad \cos ^{2} A=\frac{1+\cos (2 A)}{2}$
15. A particle moves along the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ from $(1,1,1)$ to $(8,4,2)$ under the action of the force $\vec{F}=\langle z, y, x\rangle$. Find the work done.
16. The pressure in an ideal gas is given by $P=k \rho T$ where k is a constant, ρ is the density and T is the temperature. At a certain instant, the measuring instruments are located at $\quad r_{o}=(1,2,3)$ and moving with velocity $\vec{v}=\langle 4,5,6\rangle$ and acceleration $\vec{a}=\langle 7,8,9\rangle$. At that instant, the density and temperature are measured to be $\rho=12$ and $T=300$ and their gradients are $\vec{\nabla} \rho=\langle 0.6,0.4,0.2\rangle$ and $\vec{\nabla} T=\langle 2,1,4\rangle$.
Find $\frac{d P}{d t}$, the time rate of change of the pressure as seen by the instruments.
Your answer may depend on k.
HINTS: The pressure, P is a function of density, ρ, and temperature, T, which are functions of the position coordinates, (x, y, z), which are functions of time, t. Use the chain rule.

