Name	ID		1-11	/55	14	/12
MATH 251	Exam 1	Fall 2006	12	/12	15	/12
Sections 507	Solutions	P. Yasskin	13	/12	16	/12
Multiple Choice: (5 points each. No part credit.)			Total			/103

- **1**. The vertices of a triangle are P = (3,4,-5), Q = (3,5,-4) and R = (5,2,-5). Find the angle at *P*.
 - **a**. 90°
 - **b**. 120° Correct Choice
 - **c**. 135°
 - **d**. 150°
 - **e**. 180°

$$\overrightarrow{PQ} = Q - P = \langle 0, 1, 1 \rangle \qquad \overrightarrow{PR} = R - P = \langle 2, -2, 0 \rangle \qquad \left| \overrightarrow{PQ} \right| = \sqrt{2} \qquad \left| \overrightarrow{PR} \right| = \sqrt{8} \qquad \overrightarrow{PQ} \cdot \overrightarrow{PR} = -2$$
$$\cos\theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{\left| \overrightarrow{PQ} \right| \left| \overrightarrow{PR} \right|} = \frac{-2}{\sqrt{2}\sqrt{8}} = \frac{-1}{2} \qquad \theta = 120^{\circ}$$

- 2. Find the volume of the parallelepiped with edge vectors:
 - $\vec{a} = \langle 4, 1, 2 \rangle$ $\vec{b} = \langle 2, 2, 1 \rangle$ $\vec{c} = \langle 1, 3, 0 \rangle$ a. -3 b. 0 c. $\sqrt{3}$
 - d. 3 Correct Choice
 - **e**. 9

$$V = \left| \vec{a} \cdot \vec{b} \times \vec{c} \right| = \left| \left| \begin{array}{ccc} 4 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 3 & 0 \end{array} \right| = \left| 0 + 1 + 12 - 4 - 12 - 0 \right| = \left| -3 \right| = 3$$

- **3**. Consider the set of all points *P* whose distance from (1,0,0) is 3 times its distance from (-1,0,0). This set is a
 - a. sphere. Correct Choice
 - **b**. ellipsoid.
 - c. hyperboloid.
 - d. elliptic paraboloid.
 - e. hyperbolic paraboloid.

$$\sqrt{(x-1)^2 + y^2 + z^2} = 3\sqrt{(x+1)^2 + y^2 + z^2} \qquad (x-1)^2 + y^2 + z^2 = 9(x+1)^2 + 9y^2 + 9z^2$$
$$0 = 8x^2 + 20x + 8y^2 + 8z^2 + 8 \qquad 0 = x^2 + \frac{5}{2}x + y^2 + z^2 + 1 = \left(x + \frac{5}{4}\right)^2 + y^2 + z^2 - \frac{9}{16} \qquad \text{sphere}$$

- **4**. For the curve $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t \cos^2 t)$ which of the following is FALSE?
 - **a**. $\vec{v} = \langle 2\sin t\cos t, -2\sin t\cos t, 4\sin t\cos t \rangle$
 - **b**. $|\vec{v}| = \sqrt{24} \sin t \cos t$

c.
$$\hat{T} = \left\langle \frac{2}{\sqrt{24}}, \frac{-2}{\sqrt{24}}, \frac{4}{\sqrt{24}} \right\rangle$$

d. $a_T = 0$ Correct Choice

e.
$$a_N = 0$$

 \vec{v} , $|\vec{v}|$, and \hat{T} are correct by computation.

Since \hat{T} is constant, its direction does not change and $a_N = 0$.

Since $|\vec{v}|$ is not constant, $a_T = \frac{d|\vec{v}|}{dt} \neq 0$.

5. For the curve $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t - \cos^2 t)$ compute the arc length between $\vec{r}(0) = (0, 1, -1)$ and $\vec{r}\left(\frac{\pi}{2}\right) = (1, 0, 1)$.

a.
$$\frac{1}{4}\sqrt{6}$$

b. $\frac{1}{2}\sqrt{6}$
c. $\sqrt{6}$ Correct Choice
d. $2\sqrt{6}$
e. $4\sqrt{6}$
 $L = \int_{0}^{\pi/2} \sqrt{24} \sin t \cos t \, dt = \sqrt{24} \frac{\sin^{2}t}{2} \Big|_{0}^{\pi/2} = \frac{1}{2}\sqrt{24} = \sqrt{6}$

6. The plot at the right represents which vector field?

a.
$$\vec{A} = \langle x, y \rangle$$

b. $\vec{B} = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$
c. $\vec{C} = \langle y, x \rangle$
d. $\vec{D} = \left\langle \frac{y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \right\rangle$ Correct
e. $\vec{E} = \langle x + y, x - y \rangle$

The vectors all have the same length. So it must be one of the unit vector fields: \vec{B} or \vec{D} .

 \vec{B} points radial. \vec{D} is vertical on the *x*-axis and horizontal on the *y*-axis.

- 7. Describe the level surfaces of $f(x, y, z) = x^2 y^2 z^2$.
 - a. Elliptic Paraboloids
 - b. Elliptic and Hyperbolic Paraboloids
 - c. Hyperboloids of 1-sheet only
 - d. Hyperboloids of 2-sheets only
 - e. Hyperboloids of 1-sheet or 2-sheets Correct Choice

 $x^2 - y^2 - z^2 = C$ is a hyperboloid with 2-sheets if C > 0, and 1-sheet if C < 0, and a cone if C = 0.

8. Find the plane tangent to the graph of $z = xe^{xy}$ at the point (2,0). Its *z*-intercept is

a. 0 Correct C	hoice	
b . 2		
c 2		
d . 4		
e 4		
$f = x e^{xy}$	f(2,0) = 2	$z = f(2,0) + f_x(2,0)(x-2) + f_y(2,0)(y-0)$
$f_x = e^{xy} + xy e^{xy}$	$f_x(2,0) = 1$	= 2 + 1(x - 2) + 4(y) = x + 4y
$f_y = x^2 e^{xy}$	$f_y(2,0)=4$	The <i>z</i> -intercept is 0 .

9. Find the plane tangent to the surface $xyz + z^2 = 28$ at the point (4,3,2).

Its *z*-intercept is **a**. 0 **b**. 5 Correct Choice **c**. -5 **d**. 80 **e**. -80 $\vec{\nabla}F = \langle yz, xz, xy + 2z \rangle$ $\vec{N} = \vec{\nabla}F(4, 3, 2) = \langle 6, 8, 16 \rangle$ $\vec{N} \cdot X = \vec{N} \cdot P$ $6x + 8y + 16z = 6 \cdot 4 + 8 \cdot 3 + 16 \cdot 2 = 80$ $z = \frac{80}{16} - \frac{6}{16}x - \frac{8}{16}y = 5 - \frac{3}{8}x - \frac{1}{2}y$

- The *z*-intercept is 5.
- **10**. Find the line normal to the surface $xyz + z^2 = 28$ at the point (4,3,2).

It intersects the *xy*-plane at

- **a**. (4,3,2)
- **b**. (4,3,0)
- c. $\left(\frac{13}{4}, 2, 0\right)$ Correct Choice d. $\left(\frac{19}{4}, 4, 4\right)$ e. $\left(\frac{19}{4}, 4, 0\right)$
- $\vec{\nabla}F = \langle yz, xz, xy + 2z \rangle \qquad \vec{N} = \vec{\nabla}F(4,3,2) = \langle 6,8,16 \rangle \qquad X = P + t\vec{N}$ (x, y, z) = (4,3,2) + t(6,8,16) = (4 + 6t, 3 + 8t, 2 + 16t) xy-plane is z = 0 or 2 + 16t = 0 or t = $-\frac{1}{8}$ (x, y, z) = $\left(4 - \frac{3}{4}, 3 - 1, 2 - 2\right) = \left(\frac{13}{4}, 2, 0\right)$
- **11**. The salt concentration in a region of sea water is $\rho = xy^2z^3$. A swimmer is located at (3,2,1). In what direction should the swimmer swim to increase the salt concentration as fast as possible?
 - **a**. ⟨4,−12,36⟩
 - **b**. $\langle -4, 12, -36 \rangle$
 - **c**. $\langle 4, 12, 36 \rangle$ Correct Choice
 - **d**. $\langle -4, -12, -36 \rangle$
 - **e**. $\langle 4, -12, -36 \rangle$
 - $\vec{\nabla}\rho = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle = \langle 4, 12, 36 \rangle$

Do 4 of the following 5 problems. Cross out the one you do not want graded, here and on page 1. If you do not specify, #12 will be dropped.

- **12**. Which of the following functions satisfy the Laplace equation $f_{xx} + f_{yy} = 0$? Show your work!
 - **a**. $f = x^2 + y^2$ **b.** $f = x^2 - y^2$ YES NO $f_{xx} + f_{yy} = 2 + 2 \neq 0$ $f_{xx} + f_{yy} = 2 - 2 = 0$ **c**. $f = x^3 + 3xy^2$ NO **d**. $f = x^3 - 3xy^2$ YES $f_{xx} + f_{yy} = 6x - 6x = 0$ $f_{xx} + f_{yy} = 6x + 6x \neq 0$ **e.** $f = e^{-x} \cos y + e^{-y} \cos x$ f. $f = e^{-x} \cos y - e^{-y} \cos x$ YES YES $f_{xx} + f_{yy} = (e^{-x}\cos y - e^{-y}\cos x)$ $f_{xx} + f_{yy} = (e^{-x}\cos y + e^{-y}\cos x)$ $+(-e^{-x}\cos y - e^{-y}\cos x) = 0$ $+(-e^{-x}\cos y + e^{-y}\cos x) = 0$
- **13**. When two resistors with resistances R_1 and R_2 are connected in parallel, the net resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$.

If R_1 and R_2 are measured as $R_1 = 2 \pm 0.01$ ohms and $R_2 = 3 \pm 0.04$ ohms, then R can be calculated as $R = \frac{6}{5} \pm \Delta R$ ohms.

Use differentials to estimate the uncertainty ΔR in the computed value of R.

$$\Delta R = \frac{\partial R}{\partial R_1} dR_1 + \frac{\partial R}{\partial R_2} dR_2 = \frac{(R_1 + R_2)R_2 - R_1R_2}{(R_1 + R_2)^2} dR_1 + \frac{(R_1 + R_2)R_1 - R_1R_2}{(R_1 + R_2)^2} dR_2$$
$$= \frac{(R_2)^2}{(R_1 + R_2)^2} dR_1 + \frac{(R_1)^2}{(R_1 + R_2)^2} dR_2 = \frac{9}{25}(0.01) + \frac{4}{25}(0.04) = \frac{0.09 + 0.16}{25} = 0.01$$

- 14. The average of a function f on a curve $\vec{r}(t)$ is $f_{ave} = \frac{\int f ds}{\int ds}$. Find the average of $f(x,y) = x^2$ on the circle $x^2 + y^2 = 9$. HINTS: Parametrize the circle. $\sin^2 A = \frac{1 - \cos(2A)}{2}$ $\cos^2 A = \frac{1 + \cos(2A)}{2}$ $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta)$ $\vec{v} = (-3\sin\theta, 3\cos\theta)$ $|\vec{v}| = \sqrt{9\sin^2\theta + 9\cos^2\theta} = 3$ $\int ds = \int_0^{2\pi} 3 d\theta = 6\pi$ $f(r(t)) = (3\cos\theta)^2$ $\int f ds = \int_0^{2\pi} 9\cos^2\theta 3 d\theta = 27\int_0^{2\pi} \frac{1 + \cos(2\theta)}{2} d\theta = \frac{27}{2} \left[\theta + \frac{\sin(2\theta)}{2}\right]_0^{2\pi} = 27\pi$ $f_{ave} = \frac{27\pi}{6\pi} = \frac{9}{2}$
- **15**. A particle moves along the curve $\vec{r}(t) = (t^3, t^2, t)$ from (1, 1, 1) to (8, 4, 2) under the action of the force $\vec{F} = \langle z, y, x \rangle$. Find the work done.

$$\vec{v} = \langle 3t^2, 2t, 1 \rangle \qquad \vec{F}(\vec{r}(t)) = \langle t, t^2, t^3 \rangle$$

$$W = \int_{(1,1,1)}^{(8,4,2)} \vec{F} \cdot d\vec{s} = \int_1^2 \vec{F}(\vec{r}(t)) \cdot \vec{v} \, dt = \int_1^2 (3t^3 + 2t^3 + t^3) \, dt$$

$$= \int_1^2 6t^3 \, dt = 6 \frac{t^4}{4} \Big|_1^2 = \frac{3}{2}(16 - 1) = \frac{45}{2}$$

16. The pressure in an ideal gas is given by $P = k\rho T$ where k is a constant,

 ρ is the density and *T* is the temperature. At a certain instant, the measuring instruments are located at $r_o = (1,2,3)$ and moving with velocity $\vec{v} = \langle 4,5,6 \rangle$ and acceleration $\vec{a} = \langle 7,8,9 \rangle$. At that instant, the density and temperature are measured to be $\rho = 12$ and T = 300 and their gradients are $\vec{\nabla}\rho = \langle 0.6, 0.4, 0.2 \rangle$ and $\vec{\nabla}T = \langle 2,1,4 \rangle$.

Find $\frac{dP}{dt}$, the time rate of change of the pressure as seen by the instruments.

Your answer may depend on *k*.

HINTS: The pressure, *P* is a function of density, ρ , and temperature, *T*, which are functions of the position coordinates, (x, y, z), which are functions of time, *t*. Use the chain rule.

$$\begin{aligned} \frac{\partial P}{\partial \rho} &= kT = k300 \qquad \frac{\partial P}{\partial T} = k\rho = k12 \\ \frac{dP}{dt} &= \frac{\partial P}{\partial \rho} \frac{d\rho}{dt} + \frac{\partial P}{\partial T} \frac{dT}{dt} = \frac{\partial P}{\partial \rho} \left(\frac{\partial \rho}{\partial x} \frac{dx}{dt} + \frac{\partial \rho}{\partial y} \frac{dy}{dt} + \frac{\partial \rho}{\partial z} \frac{dz}{dt} \right) + \frac{\partial P}{\partial T} \left(\frac{\partial T}{\partial x} \frac{dx}{dt} + \frac{\partial T}{\partial y} \frac{dy}{dt} + \frac{\partial T}{\partial z} \frac{dz}{dt} \right) \\ &= \frac{\partial P}{\partial \rho} \left(\vec{v} \cdot \vec{\nabla} \rho \right) + \frac{\partial P}{\partial T} \left(\vec{v} \cdot \vec{\nabla} T \right) = k300 \left(\langle 4, 5, 6 \rangle \cdot \langle 0.6, 0.4, 0.2 \rangle \right) + k12 \left(\langle 4, 5, 6 \rangle \cdot \langle 2, 1, 4 \rangle \right) \\ &= k300 \left(2.4 + 2 + 1.2 \right) + k12 \left(8 + 5 + 24 \right) = k(300 \cdot 5.6 + 12 \cdot 37) = 2124k \end{aligned}$$

6