1. The vertices of a triangle are \(P = (3, 4, -5), \; Q = (3, 5, -4) \) and \(R = (5, 2, -5). \) Find the angle at \(P. \)

a. \(90^\circ \)

b. \(120^\circ \) **Correct Choice**

c. \(135^\circ \)

d. \(150^\circ \)

e. \(180^\circ \)

\[
\overrightarrow{PQ} = Q - P = (0, 1, 1) \quad \overrightarrow{PR} = R - P = (2, -2, 0) \quad |\overrightarrow{PQ}| = \sqrt{2} \quad |\overrightarrow{PR}| = \sqrt{8} \quad \overrightarrow{PQ} \cdot \overrightarrow{PR} = -2
\]

\[
\cos \theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{|\overrightarrow{PQ}| |\overrightarrow{PR}|} = \frac{-2}{\sqrt{2} \sqrt{8}} = -\frac{1}{2} \quad \theta = 120^\circ
\]

2. Find the volume of the parallelepiped with edge vectors:

\(\vec{a} = \langle 4, 1, 2 \rangle \quad \vec{b} = \langle 2, 2, 1 \rangle \quad \vec{c} = \langle 1, 3, 0 \rangle \)

a. \(-3\)

b. \(0\)

c. \(\sqrt{3}\)

d. \(3 \) **Correct Choice**

e. \(9\)

\[
V = |\vec{a} \cdot \vec{b} \times \vec{c}| = \begin{vmatrix} 4 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 3 & 0 \end{vmatrix} = |0 + 12 - 4 - 12 - 0| = |-3| = 3
\]
3. Consider the set of all points P whose distance from $(1, 0, 0)$ is 3 times its distance from $(-1, 0, 0)$. This set is a
 a. sphere. Correct Choice
 b. ellipsoid.
 c. hyperboloid.
 d. elliptic paraboloid.
 e. hyperbolic paraboloid.

\[
\sqrt{(x-1)^2 + y^2 + z^2} = 3\sqrt{(x+1)^2 + y^2 + z^2}
\]
\[
(x-1)^2 + y^2 + z^2 = 9(x+1)^2 + 9y^2 + 9z^2
\]
\[
0 = 8x^2 + 20x + 8y^2 + 8z^2 + 8
\]
\[
0 = x^2 + \frac{5}{2}x + y^2 + z^2 + 1 = \left(x + \frac{5}{4}\right)^2 + y^2 + z^2 - \frac{9}{16}
\]

sphere

4. For the curve $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t - \cos^2 t)$ which of the following is FALSE?
 a. $\vec{v} = \langle 2 \sin t \cos t, -2 \sin t \cos t, 4 \sin t \cos t \rangle$
 b. $|\vec{v}| = \sqrt{24} \sin t \cos t$
 c. $\hat{T} = \left\langle \frac{2}{\sqrt{24}}, \frac{-2}{\sqrt{24}}, \frac{4}{\sqrt{24}} \right\rangle$
 d. $a_T = 0$ Correct Choice
 e. $a_N = 0$

\vec{v}, $|\vec{v}|$, and \hat{T} are correct by computation.
Since \hat{T} is constant, its direction does not change and $a_N = 0$.
Since $|\vec{v}|$ is not constant, $a_T = \frac{d|\vec{v}|}{dt} \neq 0$.

5. For the curve $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t - \cos^2 t)$ compute the arc length between $\vec{r}(0) = (0, 1, -1)$ and $\vec{r}\left(\frac{\pi}{2}\right) = (1, 0, 1)$.
 a. $\frac{1}{4} \sqrt{6}$
 b. $\frac{1}{2} \sqrt{6}$
 c. $\sqrt{6}$ Correct Choice
 d. $2\sqrt{6}$
 e. $4\sqrt{6}$

\[
L = \int_0^{\pi/2} \sqrt{24 \sin t \cos t} \, dt = \left. \sqrt{24} \frac{\sin^2 t}{2} \right|_0^{\pi/2} = \frac{1}{2} \sqrt{24} = \sqrt{6}
\]
6. The plot at the right represents which vector field?
 a. \(\vec{A} = \langle x, y \rangle \)
 b. \(\vec{B} = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right) \)
 c. \(\vec{C} = \langle y, x \rangle \)
 d. \(\vec{D} = \left(\frac{y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \right) \) Correct Choice
 e. \(\vec{E} = \langle x + y, x - y \rangle \)

 The vectors all have the same length. So it must be one of the unit vector fields: \(\vec{B} \) or \(\vec{D} \).

 \(\vec{B} \) points radial. \(\vec{D} \) is vertical on the x-axis and horizontal on the y-axis.

7. Describe the level surfaces of \(f(x, y, z) = x^2 - y^2 - z^2 \).
 a. Elliptic Paraboloids
 b. Elliptic and Hyperbolic Paraboloids
 c. Hyperboloids of 1-sheet only
 d. Hyperboloids of 2-sheets only
 e. Hyperboloids of 1-sheet or 2-sheets Correct Choice

 \(x^2 - y^2 - z^2 = C \) is a hyperboloid with 2-sheets if \(C > 0 \), and 1-sheet if \(C < 0 \),
 and a cone if \(C = 0 \).

8. Find the plane tangent to the graph of \(z = xe^{xy} \) at the point \((2, 0) \). Its z-intercept is
 a. 0 Correct Choice
 b. 2
 c. −2
 d. 4
 e. −4

 \(f = xe^{xy} \) \hspace{1cm} \(f(2, 0) = 2 \) \hspace{1cm} \(z = f(2, 0) + f_x(2, 0)(x - 2) + f_y(2, 0)(y - 0) \)
 \(f_x = e^{xy} + xy e^{xy} \) \hspace{1cm} \(f_x(2, 0) = 1 \) \hspace{1cm} \(= 2 + 1(x - 2) + 4(y) = x + 4y \)
 \(f_y = xe^{xy} \) \hspace{1cm} \(f_y(2, 0) = 4 \) \hspace{1cm} The z-intercept is 0.
9. Find the plane tangent to the surface \(xyz + z^2 = 28\) at the point \((4, 3, 2)\).

Its \(z\)-intercept is

a. 0
b. 5 Correct Choice
c. −5
d. 80
e. −80

\[\vec{N} = \vec{\nabla} F(4, 3, 2) = \langle 6, 8, 16 \rangle \]

\[\vec{N} \cdot X = \vec{N} \cdot P \]

\[6x + 8y + 16z = 6 \cdot 4 + 8 \cdot 3 + 16 \cdot 2 = 80 \]

\[z = \frac{80}{16} - \frac{6}{16}x - \frac{8}{16}y = 5 - \frac{3}{8}x - \frac{1}{2}y \]

The \(z\)-intercept is 5.

10. Find the line normal to the surface \(xyz + z^2 = 28\) at the point \((4, 3, 2)\).

It intersects the \(xy\)-plane at

a. \((4, 3, 2)\)
b. \((4, 3, 0)\)
c. \(\left(\frac{13}{4}, 2, 0\right)\) Correct Choice
d. \(\left(\frac{19}{4}, 4, 4\right)\)
e. \(\left(\frac{19}{4}, 4, 0\right)\)

\[\vec{N} = \vec{\nabla} F(4, 3, 2) = \langle 6, 8, 16 \rangle \]

\[X = P + t \vec{N} \]

\[(x, y, z) = (4, 3, 2) + t(6, 8, 16) = (4 + 6t, 3 + 8t, 2 + 16t) \]

\[(x, y, z) \text{ is } z = 0 \text{ or } 2 + 16t = 0 \text{ or } t = -\frac{1}{8} \]

\[(x, y, z) = \left(\frac{4}{4}, 3 - 1, 2 - 2\right) = \left(\frac{13}{4}, 2, 0\right) \]

11. The salt concentration in a region of sea water is \(\rho = xy^2z^3\). A swimmer is located at \((3, 2, 1)\).

In what direction should the swimmer swim to increase the salt concentration as fast as possible?

a. \(\langle 4, -12, 36 \rangle\)
b. \(\langle -4, 12, -36 \rangle\)
c. \(\langle 4, 12, 36 \rangle\) Correct Choice
d. \(\langle -4, -12, -36 \rangle\)
e. \(\langle 4, -12, -36 \rangle\)

\[\vec{\nabla} \rho = \langle y^2z^3, 2xyz^3, 3x^2y^2z^2 \rangle = \langle 4, 12, 36 \rangle \]
Work Out: (12 points each. Part credit possible. Show all work.)

Do 4 of the following 5 problems. Cross out the one you do not want graded, here and on page 1.
If you do not specify, #12 will be dropped.

12. Which of the following functions satisfy the Laplace equation $f_{xx} + f_{yy} = 0$?

Show your work!

a. $f = x^2 + y^2$ NO

$$f_{xx} + f_{yy} = 2 + 2 \neq 0$$

b. $f = x^2 - y^2$ YES

$$f_{xx} + f_{yy} = 2 - 2 = 0$$

c. $f = x^3 + 3xy^2$ NO

$$f_{xx} + f_{yy} = 6x + 6x \neq 0$$

d. $f = x^3 - 3xy^2$ YES

$$f_{xx} + f_{yy} = 6x - 6x = 0$$

e. $f = e^{-x}\cos y + e^{-y}\cos x$ YES

$$f_{xx} + f_{yy} = (e^{-x}\cos y - e^{-y}\cos x) + (-e^{-x}\cos y + e^{-y}\cos x) = 0$$

f. $f = e^{-x}\cos y - e^{-y}\cos x$ YES

$$f_{xx} + f_{yy} = (e^{-x}\cos y + e^{-y}\cos x) + (-e^{-x}\cos y - e^{-y}\cos x) = 0$$

13. When two resistors with resistances R_1 and R_2 are connected in parallel, the net resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
or

$$R = \frac{R_1R_2}{R_1 + R_2}.$$

If R_1 and R_2 are measured as $R_1 = 2 \pm 0.01$ ohms and $R_2 = 3 \pm 0.04$ ohms, then R can be calculated as $R = \frac{6}{5} \pm \Delta R$ ohms.

Use differentials to estimate the uncertainty ΔR in the computed value of R.

$$\Delta R = \frac{\partial R}{\partial R_1} dR_1 + \frac{\partial R}{\partial R_2} dR_2 = \frac{(R_1 + R_2)(R_2 - R_1)}{(R_1 + R_2)^2} dR_1 + \frac{(R_1 + R_2)(R_1 - R_2)}{(R_1 + R_2)^2} dR_2$$

$$= \frac{(R_2)^2}{(R_1 + R_2)^2} dR_1 + \frac{(R_1)^2}{(R_1 + R_2)^2} dR_2 = \frac{9}{25} (0.01) + \frac{4}{25} (0.04) = \frac{0.09 + 0.16}{25} = 0.01$$
14. The average of a function \(f \) on a curve \(\vec{r}(t) \) is \(f_{\text{ave}} = \frac{\int f ds}{\int ds} \).

Find the average of \(f(x, y) = x^2 \) on the circle \(x^2 + y^2 = 9 \).

HINTS: Parametrize the circle.
\[
\sin^2 A = \frac{1 - \cos(2A)}{2}, \quad \cos^2 A = \frac{1 + \cos(2A)}{2}
\]

\[
\vec{r}(\theta) = (3 \cos \theta, 3 \sin \theta) \quad \vec{v} = (-3 \sin \theta, 3 \cos \theta) \quad |\vec{v}| = \sqrt{9 \sin^2 \theta + 9 \cos^2 \theta} = 3
\]

\[
\int ds = \int_0^{2\pi} 3 \, d\theta = 6\pi \quad f(r(t)) = (3 \cos \theta)^2
\]

\[
\int f ds = \int_0^{2\pi} 9 \cos^2 \theta 3 \, d\theta = 27 \int_0^{2\pi} \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{27}{2} \left[\frac{\theta}{2} + \frac{\sin(2\theta)}{4} \right]_0^{2\pi} = 27\pi
\]

\[
f_{\text{ave}} = \frac{27\pi}{6\pi} = \frac{9}{2}
\]

15. A particle moves along the curve \(\vec{r}(t) = (t^3, t^2, t) \) from \((1, 1, 1) \) to \((8, 4, 2) \) under the action of the force \(\vec{F} = (z, y, x) \). Find the work done.

\[
\vec{v} = (3t^2, 2t, 1) \quad \vec{F}(\vec{r}(t)) = (t, t^2, t^3)
\]

\[
W = \int_{(1,1,1)}^{(8,4,2)} \vec{F} \cdot d\vec{s} = \int_1^2 \vec{F}(\vec{r}(t)) \cdot \vec{v} \, dt = \int_1^2 (3t^3 + 2t^3 + t^3) \, dt
\]

\[
= \int_1^2 6t^3 \, dt = 6 \left[t^4 \right]_1^2 = \frac{3}{2} (16 - 1) = \frac{45}{2}
\]

16. The pressure in an ideal gas is given by \(P = k\rho T \) where \(k \) is a constant, \(\rho \) is the density and \(T \) is the temperature. At a certain instant, the measuring instruments are located at \(\vec{r}_o = (1, 2, 3) \) and moving with velocity \(\vec{v} = (4, 5, 6) \) and acceleration \(\vec{a} = (7, 8, 9) \).

At that instant, the density and temperature are measured to be \(\rho = 12 \) and \(T = 300 \) and their gradients are \(\vec{\nabla}\rho = \langle 0.6, 0.4, 0.2 \rangle \) and \(\vec{\nabla}T = \langle 2, 1, 4 \rangle \).

Find \(\frac{dP}{dt} \), the time rate of change of the pressure as seen by the instruments.

Your answer may depend on \(k \).

HINTS: The pressure, \(P \) is a function of density, \(\rho \), and temperature, \(T \), which are functions of the position coordinates, \((x, y, z) \), which are functions of time, \(t \). Use the chain rule.

\[
\frac{\partial P}{\partial \rho} = kT = k300 \quad \frac{\partial P}{\partial T} = k \rho = k12
\]

\[
\frac{dP}{dt} = \frac{\partial P}{\partial \rho} \frac{d\rho}{dt} + \frac{\partial P}{\partial T} \frac{dT}{dt} = \frac{\partial P}{\partial \rho} \left(\frac{\partial \rho}{\partial x} \frac{dx}{dt} + \frac{\partial \rho}{\partial y} \frac{dy}{dt} + \frac{\partial \rho}{\partial z} \frac{dz}{dt} \right) + \frac{\partial P}{\partial T} \left(\frac{\partial T}{\partial x} \frac{dx}{dt} + \frac{\partial T}{\partial y} \frac{dy}{dt} + \frac{\partial T}{\partial z} \frac{dz}{dt} \right)
\]

\[
= \frac{\partial P}{\partial \rho} (\vec{v} \cdot \vec{\nabla}\rho) + \frac{\partial P}{\partial T} (\vec{v} \cdot \vec{\nabla}T) = k300(\langle 4, 5, 6 \rangle \cdot \langle 0.6, 0.4, 0.2 \rangle) + k12(\langle 4, 5, 6 \rangle \cdot \langle 2, 1, 4 \rangle)
\]

\[
= k300(2.4 + 2 + 1.2) + k12(8 + 5 + 24) = k(300 \cdot 5.6 + 12 \cdot 37) = 2124k
\]