Name \qquad ID. \qquad

MATH 251

Sections 507

Exam 1

Solutions

Fall 2006
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-11$	$/ 55$	14	$/ 12$
12	$/ 12$	15	$/ 12$
13	$/ 12$	16	$/ 12$
Total	$/ 103$		

1. The vertices of a triangle are $P=(3,4,-5), \quad Q=(3,5,-4)$ and $R=(5,2,-5)$.

Find the angle at P.
a. 90°
b. 120° Correct Choice
c. 135°
d. 150°
e. 180°
$\overrightarrow{P Q}=Q-P=\langle 0,1,1\rangle \quad \overrightarrow{P R}=R-P=\langle 2,-2,0\rangle \quad|\overrightarrow{P Q}|=\sqrt{2} \quad|\overrightarrow{P R}|=\sqrt{8} \quad \overrightarrow{P Q} \cdot \overrightarrow{P R}=-2$
$\cos \theta=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P Q}||\overrightarrow{P R}|}=\frac{-2}{\sqrt{2} \sqrt{8}}=\frac{-1}{2} \quad \theta=120^{\circ}$
2. Find the volume of the parallelepiped with edge vectors:

$$
\vec{a}=\langle 4,1,2\rangle \quad \vec{b}=\langle 2,2,1\rangle \quad \vec{c}=\langle 1,3,0\rangle
$$

a. -3
b. 0
c. $\sqrt{3}$
d. 3 Correct Choice
e. 9

$$
V=|\vec{a} \cdot \vec{b} \times \vec{c}|=\left\|\begin{array}{lll}
4 & 1 & 2 \\
2 & 2 & 1 \\
1 & 3 & 0
\end{array}|\|=|0+1+12-4-12-0|=|-3|=3\right.
$$

3. Consider the set of all points P whose distance from $(1,0,0)$ is 3 times its distance from $(-1,0,0)$. This set is a
a. sphere. Correct Choice
b. ellipsoid.
c. hyperboloid.
d. elliptic paraboloid.
e. hyperbolic paraboloid.
$\sqrt{(x-1)^{2}+y^{2}+z^{2}}=3 \sqrt{(x+1)^{2}+y^{2}+z^{2}} \quad(x-1)^{2}+y^{2}+z^{2}=9(x+1)^{2}+9 y^{2}+9 z^{2}$
$0=8 x^{2}+20 x+8 y^{2}+8 z^{2}+8 \quad 0=x^{2}+\frac{5}{2} x+y^{2}+z^{2}+1=\left(x+\frac{5}{4}\right)^{2}+y^{2}+z^{2}-\frac{9}{16} \quad$ sphere
4. For the curve $\vec{r}(t)=\left(\sin ^{2} t, \quad \cos ^{2} t, \quad \sin ^{2} t-\cos ^{2} t\right) \quad$ which of the following is FALSE?
a. $\vec{v}=\langle 2 \sin t \cos t, \quad-2 \sin t \cos t, \quad 4 \sin t \cos t\rangle$
b. $|\vec{v}|=\sqrt{24} \sin t \cos t$
c. $\hat{T}=\left\langle\begin{array}{lll}\frac{2}{\sqrt{24}}, & \frac{-2}{\sqrt{24}}, & \frac{4}{\sqrt{24}}\end{array}\right\rangle$
d. $a_{T}=0 \quad$ Correct Choice
e. $a_{N}=0$
$\vec{v}, \quad|\vec{v}|$, and \hat{T} are correct by computation.
Since \hat{T} is constant, its direction does not change and $a_{N}=0$.
Since $|\vec{v}|$ is not constant, $a_{T}=\frac{d|\vec{v}|}{d t} \neq 0$.
5. For the curve $\vec{r}(t)=\left(\sin ^{2} t, \quad \cos ^{2} t, \quad \sin ^{2} t-\cos ^{2} t\right) \quad$ compute the arc length between $\vec{r}(0)=\left(\begin{array}{lll}0, & 1, & -1\end{array}\right)$ and $\vec{r}\left(\frac{\pi}{2}\right)=\left(\begin{array}{lll}1, & 0, & 1\end{array}\right)$.
a. $\frac{1}{4} \sqrt{6}$
b. $\frac{1}{2} \sqrt{6}$
c. $\sqrt{6}$ Correct Choice
d. $2 \sqrt{6}$
e. $4 \sqrt{6}$
$L=\int_{0}^{\pi / 2} \sqrt{24} \sin t \cos t d t=\left.\sqrt{24} \frac{\sin ^{2} t}{2}\right|_{0} ^{\pi / 2}=\frac{1}{2} \sqrt{24}=\sqrt{6}$
6. The plot at the right represents which vector field?
a. $\vec{A}=\langle x, y\rangle$
b. $\vec{B}=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$
c. $\vec{C}=\langle y, x\rangle$
d. $\vec{D}=\left\langle\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{x}{\sqrt{x^{2}+y^{2}}}\right\rangle \quad \begin{aligned} & \text { Correct } \\ & \text { Choice }\end{aligned}$

e. $\vec{E}=\langle x+y, x-y\rangle$

The vectors all have the same length. So it must be one of the unit vector fields: \vec{B} or \vec{D}. \vec{B} points radial. \vec{D} is vertical on the x-axis and horizontal on the y-axis.
7. Describe the level surfaces of $f(x, y, z)=x^{2}-y^{2}-z^{2}$.
a. Elliptic Paraboloids
b. Elliptic and Hyperbolic Paraboloids
c. Hyperboloids of 1 -sheet only
d. Hyperboloids of 2-sheets only
e. Hyperboloids of 1 -sheet or 2-sheets Correct Choice
$x^{2}-y^{2}-z^{2}=C$ is a hyperboloid with 2 -sheets if $C>0$, and 1 -sheet if $C<0$, and a cone if $C=0$.
8. Find the plane tangent to the graph of $z=x e^{x y}$ at the point $(2,0)$. Its z-intercept is
a. 0 Correct Choice
b. 2
c. -2
d. 4
e. -4
$f=x e^{x y}$
$f(2,0)=2$
$z=f(2,0)+f_{x}(2,0)(x-2)+f_{y}(2,0)(y-0)$
$f_{x}=e^{x y}+x y e^{x y}$
$f_{x}(2,0)=1$
$=2+1(x-2)+4(y)=x+4 y$
$f_{y}=x^{2} e^{x y}$
$f_{y}(2,0)=4$
The z-intercept is 0 .
9. Find the plane tangent to the surface $x y z+z^{2}=28$ at the point $(4,3,2)$. Its z-intercept is
a. 0
b. 5 Correct Choice
c. -5
d. 80
e. -80
$\vec{\nabla} F=\langle y z, x z, x y+2 z\rangle \quad \vec{N}=\vec{\nabla} F(4,3,2)=\langle 6,8,16\rangle \quad \vec{N} \cdot X=\vec{N} \cdot P$
$6 x+8 y+16 z=6 \cdot 4+8 \cdot 3+16 \cdot 2=80 \quad z=\frac{80}{16}-\frac{6}{16} x-\frac{8}{16} y=5-\frac{3}{8} x-\frac{1}{2} y$
The z-intercept is 5 .
10. Find the line normal to the surface $x y z+z^{2}=28$ at the point $(4,3,2)$.

It intersects the $x y$-plane at
a. $(4,3,2)$
b. $(4,3,0)$
c. $\left(\frac{13}{4}, 2,0\right)$ Correct Choice
d. $\left(\frac{19}{4}, 4,4\right)$
e. $\left(\frac{19}{4}, 4,0\right)$
$\vec{\nabla} F=\langle y z, x z, x y+2 z\rangle \quad \vec{N}=\vec{\nabla} F(4,3,2)=\langle 6,8,16\rangle \quad X=P+t \vec{N}$
$(x, y, z)=(4,3,2)+t(6,8,16)=(4+6 t, 3+8 t, 2+16 t)$
$x y$-plane is $z=0 \quad$ or $\quad 2+16 t=0 \quad$ or $\quad t=-\frac{1}{8}$
$(x, y, z)=\left(4-\frac{3}{4}, 3-1,2-2\right)=\left(\frac{13}{4}, 2,0\right)$
11. The salt concentration in a region of sea water is $\rho=x y^{2} z^{3}$. A swimmer is located at $(3,2,1)$. In what direction should the swimmer swim to increase the salt concentration as fast as possible?
a. $\langle 4,-12,36\rangle$
b. $\langle-4,12,-36\rangle$
c. $\langle 4,12,36\rangle$ Correct Choice
d. $\langle-4,-12,-36\rangle$
e. $\langle 4,-12,-36\rangle$
$\vec{\nabla} \rho=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle=\langle 4,12,36\rangle$

Do 4 of the following 5 problems. Cross out the one you do not want graded, here and on page 1. If you do not specify, \#12 will be dropped.
12. Which of the following functions satisfy the Laplace equation $f_{x x}+f_{y y}=0$? Show your work!
a. $f=x^{2}+y^{2} \quad \mathrm{NO}$
b. $f=x^{2}-y^{2} \quad$ YES

$$
f_{x x}+f_{y y}=2+2 \neq 0
$$

$$
f_{x x}+f_{y y}=2-2=0
$$

c. $f=x^{3}+3 x y^{2} \quad \mathrm{NO}$
d. $f=x^{3}-3 x y^{2} \quad$ YES
$f_{x x}+f_{y y}=6 x+6 x \neq 0$
$f_{x x}+f_{y y}=6 x-6 x=0$
e. $f=e^{-x} \cos y+e^{-y} \cos x$ YES

$$
\begin{aligned}
& f_{x x}+f_{y y}=\left(e^{-x} \cos y-e^{-y} \cos x\right) \\
&+\left(-e^{-x} \cos y+e^{-y} \cos x\right)=0
\end{aligned}
$$

f. $f=e^{-x} \cos y-e^{-y} \cos x$

$$
\begin{aligned}
f_{x x}+ & f_{y y}=\left(e^{-x} \cos y+e^{-y} \cos x\right) \\
& +\left(-e^{-x} \cos y-e^{-y} \cos x\right)=0
\end{aligned}
$$

13. When two resistors with resistances R_{1} and R_{2} are connected in parallel, the net resistance R is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} .
$$

If R_{1} and R_{2} are measured as $R_{1}=2 \pm 0.01$ ohms and $R_{2}=3 \pm 0.04$ ohms, then R can be calculated as $R=\frac{6}{5} \pm \Delta R$ ohms.

Use differentials to estimate the uncertainty ΔR in the computed value of R.

$$
\begin{aligned}
\Delta R & =\frac{\partial R}{\partial R_{1}} d R_{1}+\frac{\partial R}{\partial R_{2}} d R_{2}=\frac{\left(R_{1}+R_{2}\right) R_{2}-R_{1} R_{2}}{\left(R_{1}+R_{2}\right)^{2}} d R_{1}+\frac{\left(R_{1}+R_{2}\right) R_{1}-R_{1} R_{2}}{\left(R_{1}+R_{2}\right)^{2}} d R_{2} \\
& =\frac{\left(R_{2}\right)^{2}}{\left(R_{1}+R_{2}\right)^{2}} d R_{1}+\frac{\left(R_{1}\right)^{2}}{\left(R_{1}+R_{2}\right)^{2}} d R_{2}=\frac{9}{25}(0.01)+\frac{4}{25}(0.04)=\frac{0.09+0.16}{25}=0.01
\end{aligned}
$$

14. The average of a function f on a curve $\vec{r}(t)$ is $f_{\text {ave }}=\frac{\int f d s}{\int d s}$.

Find the average of $f(x, y)=x^{2}$ on the circle $x^{2}+y^{2}=9$.
HINTS: Parametrize the circle. $\quad \sin ^{2} A=\frac{1-\cos (2 A)}{2} \quad \cos ^{2} A=\frac{1+\cos (2 A)}{2}$

$$
\begin{aligned}
& \vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta) \quad \vec{v}=(-3 \sin \theta, 3 \cos \theta) \quad|\vec{v}|=\sqrt{9 \sin ^{2} \theta+9 \cos ^{2} \theta}=3 \\
& \int d s=\int_{0}^{2 \pi} 3 d \theta=6 \pi \quad f(r(t))=(3 \cos \theta)^{2} \\
& \int f d s=\int_{0}^{2 \pi} 9 \cos ^{2} \theta 3 d \theta=27 \int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} d \theta=\frac{27}{2}\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{0}^{2 \pi}=27 \pi \\
& f_{\text {ave }}=\frac{27 \pi}{6 \pi}=\frac{9}{2}
\end{aligned}
$$

15. A particle moves along the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ from $(1,1,1)$ to $(8,4,2)$ under the action of the force $\vec{F}=\langle z, y, x\rangle$. Find the work done.

$$
\begin{aligned}
& \vec{v}=\left\langle 3 t^{2}, 2 t, 1\right\rangle \quad \vec{F}(\vec{r}(t))=\left\langle t, t^{2}, t^{3}\right\rangle \\
& \begin{aligned}
W=\int_{(1,1,1)}^{(8,4,2)} \vec{F} & \cdot d \vec{s}=\int_{1}^{2} \vec{F}(\vec{r}(t)) \cdot \vec{v} d t=\int_{1}^{2}\left(3 t^{3}+2 t^{3}+t^{3}\right) d t \\
& =\int_{1}^{2} 6 t^{3} d t=\left.6 \frac{t^{4}}{4}\right|_{1} ^{2}=\frac{3}{2}(16-1)=\frac{45}{2}
\end{aligned}
\end{aligned}
$$

16. The pressure in an ideal gas is given by $P=k \rho T$ where k is a constant, ρ is the density and T is the temperature. At a certain instant, the measuring instruments are located at $\quad r_{o}=(1,2,3)$ and moving with velocity $\vec{v}=\langle 4,5,6\rangle$ and acceleration $\vec{a}=\langle 7,8,9\rangle$.

At that instant, the density and temperature are measured to be $\rho=12$ and $T=300$ and their gradients are $\vec{\nabla} \rho=\langle 0.6,0.4,0.2\rangle$ and $\vec{\nabla} T=\langle 2,1,4\rangle$.
Find $\frac{d P}{d t}$, the time rate of change of the pressure as seen by the instruments.
Your answer may depend on k.
HINTS: The pressure, P is a function of density, ρ, and temperature, T, which are functions of the position coordinates, (x, y, z), which are functions of time, t. Use the chain rule.

$$
\begin{aligned}
\frac{\partial P}{\partial \rho} & =k T=k 300 \quad \frac{\partial P}{\partial T}=k \rho=k 12 \\
\frac{d P}{d t} & =\frac{\partial P}{\partial \rho} \frac{d \rho}{d t}+\frac{\partial P}{\partial T} \frac{d T}{d t}=\frac{\partial P}{\partial \rho}\left(\frac{\partial \rho}{\partial x} \frac{d x}{d t}+\frac{\partial \rho}{\partial y} \frac{d y}{d t}+\frac{\partial \rho}{\partial z} \frac{d z}{d t}\right)+\frac{\partial P}{\partial T}\left(\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}+\frac{\partial T}{\partial z} \frac{d z}{d t}\right) \\
& =\frac{\partial P}{\partial \rho}(\vec{v} \cdot \vec{\nabla} \rho)+\frac{\partial P}{\partial T}(\vec{v} \cdot \vec{\nabla} T)=k 300(\langle 4,5,6\rangle \cdot\langle 0.6,0.4,0.2\rangle)+k 12(\langle 4,5,6\rangle \cdot\langle 2,1,4\rangle) \\
& =k 300(2.4+2+1.2)+k 12(8+5+24)=k(300 \cdot 5.6+12 \cdot 37)=2124 k
\end{aligned}
$$

