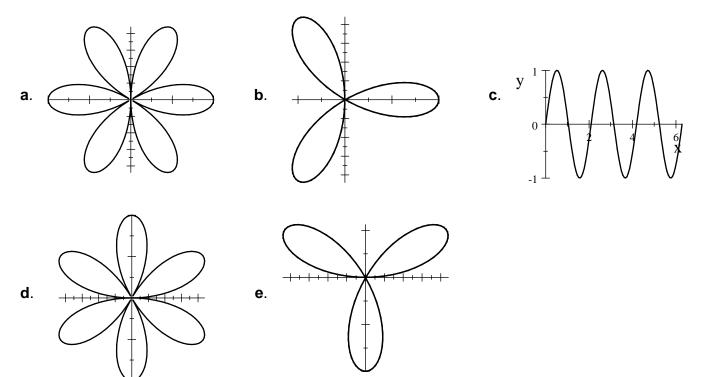
Name	ID		1-9	/45	12	/12
MATH 251	Exam 2	Fall 2006	10	/12	13	/12
Sections 507		P. Yasskin	11	/12	14	/12
Multiple Choice: (5 points each. No part credit.)			Total			/105

$\int_{0}^{z} \int_{0}^{z} \int_{0}^{xz} 30x dy dx dz.$
2

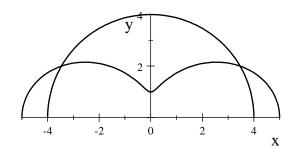
- **a**. 4
- **b**. 8
- **c**. 16
- **d**. 32
- **e**. 64

2. Compute $\int_{0}^{2} \int_{y^{2}}^{4} y \sin(x^{2}) dx dy$ by interchanging the order of integration.

a. $\frac{-\cos 16}{2}$ **b.** $\frac{1-\cos 16}{4}$ **c.** $\frac{\cos 16-1}{2}$ **d.** $\frac{\cos 16}{8}$ **e.** $\frac{\cos 16-1}{4}$ **3**. Which of the following is the polar plot of $r = \sin(3\theta)$?



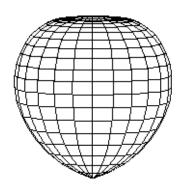
4. Find the area of the region inside the circle r = 4 outside the polar curve r = 3 + 2 cos(2θ) with y ≥ 0. The area is given by the integral:



a.
$$A = \int_{\pi/3}^{5\pi/3} \int_{3+2\cos(2\theta)}^{4} dr d\theta$$

b. $A = \int_{\pi/3}^{5\pi/3} \int_{3+2\cos(2\theta)}^{4} r dr d\theta$
c. $A = \int_{\pi/6}^{5\pi/6} \int_{3+2\cos(2\theta)}^{4} dr d\theta$
d. $A = \int_{\pi/6}^{5\pi/6} \int_{3+2\cos(2\theta)}^{4} r dr d\theta$
e. $A = \int_{\pi/3}^{5\pi/3} \int_{4}^{3+2\cos(2\theta)} dr d\theta$

5. Find the volume of the apple given in spherical coordinates by ρ = φ.
The volume is given by the integral:



a.
$$\frac{2\pi}{3} \int_{0}^{\pi} \varphi^{3} \sin \varphi \, d\varphi$$

b.
$$2\pi \int_{0}^{2\pi} \varphi^{2} \sin \varphi \, d\varphi$$

c.
$$2\pi \int_{0}^{\pi} \varphi^{2} \sin \varphi \, d\varphi$$

d.
$$\pi \int_{0}^{2\pi} \varphi^{2} \sin \varphi \, d\varphi$$

e.
$$\pi \int_{0}^{\pi} \varphi^{2} \sin \varphi \, d\varphi$$

- 6. Find a scalar potential f for the vector field $\vec{F} = (y + z, x + z, x + y + 2z)$. Then evaluate f(1, 1, 1) - f(0, 0, 0):
 - **a**. 1
 - **b**. 2
 - **c**. 4
 - **d**. 5
 - **e**. 7
- **7**. Which vector field cannot be written as $\vec{\nabla} \times \vec{F}$ for any vector field \vec{F} .
 - **a**. $\vec{A} = (x, y, -2z)$
 - **b**. $\vec{B} = (xz, yz, z^2)$
 - **c**. $\vec{C} = (xz, yz, -z^2)$
 - **d**. $\vec{D} = (z \sin x, -yz \cos x, y \sin x)$
 - $\mathbf{e}. \ \vec{E} = (x \sin y, \cos y, x \cos y)$

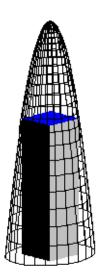
- **8**. Find the total mass of a plate occupying the region between $y = x^2$ and y = 4if the mass density is $\rho = y$.
 - **a**. $\frac{32}{3}$
 - **b**. $\frac{32}{9}$

 - **c**. $\frac{64}{5}$
 - **d**. $\frac{128}{5}$
 - **e**. $\frac{256}{5}$

- **9**. Find the center of mass of a plate occupying the region between $y = x^2$ and y = 4if the mass density is $\rho = y$.
 - **a**. $\left(0, \frac{20}{7}\right)$
 - **b**. $(0, \frac{12}{5})$
 - **c**. $\left(0, \frac{512}{7}\right)$
 - **d**. $\left(0, \frac{128}{5}\right)$
 - **e**. $(0, \frac{14}{5})$

10. Find the dimensions and volume of the largest box which sits on the *xy*-plane and whose upper vertices are on the elliptic paraboloid $z = 12 - 2x^2 - 3y^2$.

You do not need to show it is a maximum. You MUST eliminate the constraint. Do not use Lagrange multipliers.



11. A pot of water is sitting on a stove. The pot is a cylinder of radius 3 inches and height 4 inches. If the origin is located at the center of the bottom, then the temperature of the water is $T = 102 + x^2 + y^2 - z$. Find the average temperature of the water: $T_{ave} = \frac{\iiint T dV}{\iiint dV}$. **12**. Compute $\iint_{D} x \, dx \, dy$ over the "diamond"

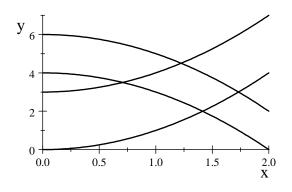
shaped region bounded by the curves

$$y = x^2$$
 $y = 3 + x^2$ $y = 4 - x^2$ $y = 6 - x^2$

Use the curvilinear coordinates

 $u = y + x^2$ and $v = y - x^2$.

(Half credit for using rectangular coordinates.)



13. The sides of a cylinder *C* of radius 3 and height 4 may be parametrized by $R(h,\theta) = (3\cos\theta, 3\sin\theta, h)$ for $0 \le \theta \le 2\pi$ and $0 \le h \le 4$. Compute $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ for $\vec{F} = (-yz^2, xz^2, z^3)$ and outward normal. HINT: Find \vec{e}_h , \vec{e}_θ , $\vec{N} = \vec{e}_h \times \vec{e}_\theta$, $\vec{\nabla} \times \vec{F}$ and $(\vec{\nabla} \times \vec{F})(\vec{R}(h,\theta))$. 14. The hemispherical surface $x^2 + y^2 + z^2 = 9$ has surface density $\rho = x^2 + y^2$. The surface may be parametrized by $\vec{R}(\varphi, \theta) = (3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 3 \cos \varphi)$. Find the mass and center of mass of the surface.

HINT: Find \vec{e}_{φ} , \vec{e}_{θ} , $\vec{N} = \vec{e}_{\varphi} \times \vec{e}_{\theta}$, $\left| \vec{N} \right|$ and $\rho \left(\vec{R}(\varphi, \theta) \right)$.