Name_____ ID_____

MATH 251 Final Exam Fall 2006
Sections 507 P. Yasskin

1-10	/50
11	/15
12	/15
13	/15
14	/15
Total	/110

- 1. For the curve $\vec{r}(t) = (t\cos t, t\sin t)$, which of the following is false?
 - **a**. The velocity is $\vec{v} = (\cos t t \sin t, \sin t + t \cos t)$

Multiple Choice: (5 points each. No part credit.)

- **b**. The speed is $|\vec{v}| = \sqrt{1+t^2}$
- **c**. The acceleration is $\vec{a} = (-2\sin t t\cos t, 2\cos t t\sin t)$
- **d**. The arclength between t = 0 and t = 1 is $L = \int_0^1 t \sqrt{1 + t^2} dt$
- **e**. The tangential acceleration is $a_T = \frac{t}{\sqrt{1+t^2}}$

- **2**. Find the plane tangent to the surface $x^2z^2 + y^4 = 5$ at the point (2,1,1).
 - **a**. 2x + y + z = 6
 - **b**. 2x + y + z = 5
 - **c**. x + y + 2z = 5
 - **d**. x y + 2z = 3
 - **e**. x y + 2z = 6

- 3. Let $L = \lim_{(x,y)\to(0,0)} \frac{x^2 + xy^2}{x^2 + y^4}$
 - **a**. L exists and L=1 by looking at the paths y=mx.
 - **b**. L does not exist by looking at the paths y = x and $y = \sqrt{x}$.
 - **c**. L does not exist by looking at the paths $y = \sqrt{x}$ and $y = -\sqrt{x}$.
 - **d**. L does not exist by looking at the paths $x = my^2$.
 - **e**. L does not exist by looking at the paths $x = y^3$ and $x = -y^3$.

- **4**. The point (1,-3) is a critical point of the function $f = xy^2 3x^3 + 6y$. It is a
 - a. local minimum.
 - b. local maximum.
 - c. saddle point.
 - d. inflection point.
 - e. The Second Derivative Test fails.
- 5. The dimensions of a closed rectangular box are measured as 70 cm, 50 cm and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
 - **a**. 8
 - **b**. 16
 - **c**. 32
 - **d**. 64
 - **e**. 128

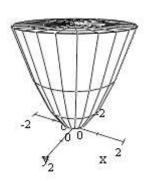
- **6**. Consider the quarter of the cylinder $x^2 + y^2 \le 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the total mass of the quarter cylinder if the density is $\rho = e^{x^2 + y^2}$.
 - **a**. $2\pi(e^4-1)$
 - **b**. $8\pi(e^4-1)$
 - **c**. $2\pi e^4$
 - **d**. $8\pi e^4$
 - **e**. 4

- 7. Consider the quarter of the cylinder $x^2 + y^2 \le 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the *z*- component of the center of mass of the quarter cylinder if the density is $\rho = e^{x^2 + y^2}$.
 - **a**. $2\pi(e^4-1)$
 - **b**. $8\pi(e^4-1)$
 - **c**. $2\pi e^4$
 - **d**. $8\pi e^4$
 - **e**. 4

- 8. Compute the line integral $\int y dx x dy$ counterclockwise around the semicircle $x^2 + y^2 = 9$ from (3,0) to (-3,0). (HINT: Parametrize the curve.)
 - **a**. -9π
 - **b**. -3π
 - **c**. π
 - **d**. 3π
 - **e**. 9π

- 9. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (y, x)$ along the curve $\vec{r}(t) = \left(e^{\cos\left(t^2\right)}, e^{\sin\left(t^2\right)}\right)$ for $0 \le t \le \sqrt{\pi}$. (HINT: Find a scalar potential.)
 - **a**. $e \frac{1}{e}$
 - **b**. $\frac{1}{e} e$
 - **c**. $\frac{2}{e}$
 - **d**. 2*e*
 - **e**. 0

10. Consider the parabolic surface P given by $z=x^2+y^2$ for $z\leq 4$ with normal pointing up and in, the disk D given by $x^2+y^2\leq 4$ and z=4 with normal pointing up, and the volume V between them. Given that for a certain vector field \vec{F} we have $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = 14 \quad \text{and} \quad \iiint_D \vec{F} \cdot d\vec{S} = 3$



a. 17

compute $\iint_{P} \vec{F} \cdot d\vec{S}$.

- **b**. 11
- **c**. 8
- **d**. -11
- **e**. -17

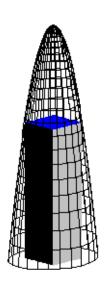
Work Out: (15 points each. Part credit possible.)

11. Find the dimensions and volume of the largest box which sits on the xy-plane and whose upper vertices are on the elliptic paraboloid $z + 2x^2 + 3y^2 = 12$.

You do not need to show it is a maximum.

You MUST use the Method of Lagrange multipliers.

Half credit for the Method of Elminating the Constraint.



12. The hemisphere H given by

$$x^2 + y^2 + (z - 2)^2 = 9$$
 for $z \ge 2$

has center (0,0,2) and radius 3. Verify Stokes' Theorem

$$\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial H} \vec{F} \cdot d\vec{S}$$

for this hemisphere H with normal pointing up and out and the vector field $\vec{F} = (yz, -xz, z)$.

Be sure to check and explain the orientations. Use the following steps:

a. The hemisphere may be parametrized by

$$\vec{R}(\theta, \varphi) = (3\sin\varphi\cos\theta, 3\sin\varphi\sin\theta, 2 + 3\cos\varphi)$$

Compute the surface integral by successively finding:

$$\vec{e}_{\theta}, \vec{e}_{\varphi}, \vec{N}, \vec{\nabla} \times \vec{F}, \vec{\nabla} \times \vec{F} (\vec{R}(\theta, \varphi)), \iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$

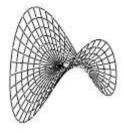
b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:

$$\vec{r}(\theta)$$
, $\vec{v}(\theta)$, $\vec{F}(\vec{r}(\theta))$, $\oint_{\partial H} \vec{F} \cdot d\vec{s}$. Recall: $\vec{F} = (yz, -xz, z)$

13. The spider web at the right is the graph of the hyperbolic paraboloid z = xy. It may be parametrized as

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2\sin\theta\cos\theta).$$

Find the area of the web for $r \le \sqrt{3}$.



14. Green's Theorem states:

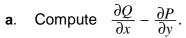
$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint\limits_{\partial R} P \, dx + Q \, dy$$

Verify Green's Theorem for the functions

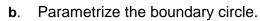
$$P = -x^2y$$
 and $Q = xy^2$

on the region inside the circle $x^2 + y^2 = 16$.

Use the following steps:



Then compute $\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$ by converting to polar coordinates.



Compute P, Q, dx and dy on the boundary curve.

Then compute $\oint_{\partial R} P dx + Q dy$ around the boundary.