Name $\qquad$ ID $\qquad$
MATH 251
Final Exam
Fall 2006
Sections 507
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

| $1-10$ | $/ 50$ |
| :---: | :---: |
| 11 | $/ 15$ |
| 12 | $/ 15$ |
| 13 | $/ 15$ |
| 14 | $/ 15$ |
| Total | $/ 110$ |

1. For the curve $\vec{r}(t)=(t \cos t, t \sin t)$, which of the following is false?
a. The velocity is $\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
b. The speed is $|\vec{v}|=\sqrt{1+t^{2}}$
c. The acceleration is $\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
d. The arclength between $t=0$ and $t=1$ is $L=\int_{0}^{1} t \sqrt{1+t^{2}} d t$
e. The tangential acceleration is $a_{T}=\frac{t}{\sqrt{1+t^{2}}}$
2. Find the plane tangent to the surface $x^{2} z^{2}+y^{4}=5$ at the point $(2,1,1)$.
a. $\quad 2 x+y+z=6$
b. $2 x+y+z=5$
c. $x+y+2 z=5$
d. $x-y+2 z=3$
e. $x-y+2 z=6$
3. Let $L=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y^{2}}{x^{2}+y^{4}}$
a. $\quad L$ exists and $L=1$ by looking at the paths $y=m x$.
b. $\quad L$ does not exist by looking at the paths $y=x$ and $y=\sqrt{x}$.
c. $L$ does not exist by looking at the paths $y=\sqrt{x}$ and $y=-\sqrt{x}$.
d. $L$ does not exist by looking at the paths $x=m y^{2}$.
e. $L$ does not exist by looking at the paths $x=y^{3}$ and $x=-y^{3}$.
4. The point $(1,-3)$ is a critical point of the function $f=x y^{2}-3 x^{3}+6 y$. It is a
a. local minimum.
b. local maximum.
c. saddle point.
d. inflection point.
e. The Second Derivative Test fails.
5. The dimensions of a closed rectangular box are measured as $70 \mathrm{~cm}, 50 \mathrm{~cm}$ and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
a. 8
b. 16
c. 32
d. 64
e. 128
6. Consider the quarter of the cylinder $x^{2}+y^{2} \leq 4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$.

Find the total mass of the quarter cylinder if the density is $\rho=e^{x^{2}+y^{2}}$.
a. $2 \pi\left(e^{4}-1\right)$
b. $8 \pi\left(e^{4}-1\right)$
c. $2 \pi e^{4}$
d. $8 \pi e^{4}$
e. 4
7. Consider the quarter of the cylinder $x^{2}+y^{2} \leq 4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$.

Find the $z$-component of the center of mass of the quarter cylinder if the density is $\rho=e^{x^{2}+y^{2}}$.
a. $2 \pi\left(e^{4}-1\right)$
b. $8 \pi\left(e^{4}-1\right)$
c. $2 \pi e^{4}$
d. $8 \pi e^{4}$
e. 4
8. Compute the line integral $\int y d x-x d y$ counterclockwise around the semicircle $x^{2}+y^{2}=9$ from $(3,0)$ to $(-3,0)$. (HINT: Parametrize the curve.)
a. $-9 \pi$
b. $-3 \pi$
c. $\pi$
d. $3 \pi$
e. $9 \pi$
9. Compute the line integral $\int \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y, x)$ along the curve $\vec{r}(t)=\left(e^{\cos \left(t^{2}\right)}, e^{\sin \left(t^{2}\right)}\right)$ for $0 \leq t \leq \sqrt{\pi}$. (HINT: Find a scalar potential.)
a. $\quad e-\frac{1}{e}$
b. $\frac{1}{e}-e$
c. $\frac{2}{e}$
d. $2 e$
e. 0
10. Consider the parabolic surface $P$ given by $z=x^{2}+y^{2}$ for $z \leq 4$ with normal pointing up and in, the disk $D$ given by $x^{2}+y^{2} \leq 4$ and $z=4$ with normal pointing up, and the volume $V$ between them.
Given that for a certain vector field $\vec{F}$ we have

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=14 \quad \text { and } \quad \iint_{D} \vec{F} \cdot d \vec{S}=3
$$

compute $\iint_{P} \vec{F} \cdot d \vec{S}$.
a. $\quad 17$
b. 11
c. 8
d. -11
e. -17

## Work Out: (15 points each. Part credit possible.)

11. Find the dimensions and volume of the largest box which sits on the $x y$-plane and whose upper vertices are on the elliptic paraboloid $z+2 x^{2}+3 y^{2}=12$.

You do not need to show it is a maximum.
You MUST use the Method of Lagrange multipliers.
Half credit for the Method of Elminating the Constraint.

12. The hemisphere $H$ given by

$$
x^{2}+y^{2}+(z-2)^{2}=9 \text { for } z \geq 2
$$

has center $(0,0,2)$ and radius 3 . Verify Stokes' Theorem

$$
\iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial H} \vec{F} \cdot d \vec{s}
$$



Be sure to check and explain the orientations. Use the following steps:
a. The hemisphere may be parametrized by

$$
\vec{R}(\theta, \varphi)=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2+3 \cos \varphi)
$$

Compute the surface integral by successively finding:
$\vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)), \quad \iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$
b. Parametrize the boundary circle $\partial H$ and compute the line integral by successively finding:
$\vec{r}(\theta), \quad \vec{v}(\theta), \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial H} \vec{F} \cdot d \vec{s} . \quad$ Recall: $\quad \vec{F}=(y z,-x z, z)$
13. The spider web at the right is the graph of the hyperbolic paraboloid $z=x y$. It may be parametrized as

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2} \sin \theta \cos \theta\right) .
$$

Find the area of the web for $r \leq \sqrt{3}$.

14. Green's Theorem states:

$$
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\partial R} P d x+Q d y
$$

Verify Green's Theorem for the functions

$$
P=-x^{2} y \quad \text { and } \quad Q=x y^{2}
$$

on the region inside the circle $x^{2}+y^{2}=16$.
Use the following steps:

a. Compute $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$.

Then compute $\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ by converting to polar coordinates.
b. Parametrize the boundary circle.

Compute $P, Q, d x$ and $d y$ on the boundary curve.
Then compute $\oint_{\partial R} P d x+Q d y$ around the boundary.

