Name	ID		1-10	/50
MATH 251	Final Exam	Fall 2006	11	/15
Sections 507	Solutions	P. Yasskin	12	/15
Multiple Choice: (5 points each. No part credit.)			13	/15
			14	/15
			Total	/110
1 For the curve $\vec{r}(t)$	$) = (t \cos t t \sin t)$ which	of the following is false?		

1. For the curve $\vec{r}(t) = (t \cos t, t \sin t)$, which of the following is false?

- **a**. The velocity is $\vec{v} = (\cos t t \sin t, \sin t + t \cos t)$
- **b**. The speed is $|\vec{v}| = \sqrt{1+t^2}$
- **c**. The acceleration is $\vec{a} = (-2\sin t t\cos t, 2\cos t t\sin t)$
- **d**. The arclength between t = 0 and t = 1 is $L = \int_0^1 t \sqrt{1 + t^2} dt$ Correct Choice
- **e**. The tangential acceleration is $a_T = \frac{t}{\sqrt{1+t^2}}$

 $\vec{v} = (\cos t - t\sin t, \sin t + t\cos t)$ $|\vec{v}| = \sqrt{(\cos t - t\sin t)^2 + (\sin t + t\cos t)^2} = \sqrt{\cos^2 t + t^2 \cos^2 t + \sin^2 t + t^2 \sin^2 t} = \sqrt{1 + t^2}$ $\vec{a} = (-2\sin t - t\cos t, 2\cos t - t\sin t)$ $L = \int_0^1 |\vec{v}| \, dt = \int_0^1 \sqrt{1 + t^2} \, dt$ $a_T = \frac{d|\vec{v}|}{dt} = \frac{2t}{2\sqrt{1 + t^2}} \quad \text{or}$ $a_T = \vec{a} \cdot \hat{T} = (-2\sin t - t\cos t, 2\cos t - t\sin t) \cdot \frac{1}{\sqrt{1 + t^2}} (\cos t - t\sin t, \sin t + t\cos t)$ $= \frac{1}{\sqrt{1 + t^2}} [(-2\sin t - t\cos t)(\cos t - t\sin t) + (2\cos t - t\sin t)(\sin t + t\cos t)] = \frac{t}{\sqrt{1 + t^2}}$

2. Find the plane tangent to the surface $x^2z^2 + y^4 = 5$ at the point (2,1,1).

a.
$$2x + y + z = 6$$

b. $2x + y + z = 5$
c. $x + y + 2z = 5$ Correct Choice
d. $x - y + 2z = 3$
e. $x - y + 2z = 6$
 $f = x^2 z^2 + y^4$ $P = (2, 1, 1)$ $\vec{\nabla} f = (2xz^2, 4y^3, 2x^2z)$ $\vec{N} = \vec{\nabla} f \Big|_P = (4, 4, 8)$
 $\vec{N} \cdot X = \vec{N} \cdot P$ $4x + 4y + 8z = 8 + 4 + 8 = 20$ $x + y + 2z = 5$

3. Let
$$L = \lim_{(x,y)\to(0,0)} \frac{x^2 + xy^2}{x^2 + y^4}$$

- **a**. *L* exists and L = 1 by looking at the paths y = mx.
- **b**. *L* does not exist by looking at the paths y = x and $y = \sqrt{x}$.
- **c**. *L* does not exist by looking at the paths $y = \sqrt{x}$ and $y = -\sqrt{x}$.
- **d**. L does not exist by looking at the paths $x = my^2$. Correct Choice
- **e**. *L* does not exist by looking at the paths $x = y^3$ and $x = -y^3$.

Along y = mx, we have $L = \lim_{x \to 0} \frac{x^2 + m^2 x^4}{x^2 + m^4 x^4} = \lim_{x \to 0} \frac{1 + m^2 x^3}{1 + m^4 x^2} = 1$, which proves nothing. Along $y = \pm \sqrt{x}$, we have $L = \lim_{x \to 0} \frac{x^2 + x^2}{x^2 + x^2} = 1$, which proves nothing. Along $x = my^2$, we have $L = \lim_{y \to 0} \frac{m^2 y^4 + my^4}{m^4 y^4 + y^4} = \lim_{y \to 0} \frac{m^2 + m}{m^4 + 1}$, which depends on m and proves the limit does not exist.

Along $x = \pm y^3$, we have $L = \lim_{y \to 0} \frac{y^6 \pm y^5}{y^6 + y^4} = \lim_{y \to 0} \frac{y^2 \pm y}{y^2 + 1} = 0$, which (by itself) proves nothing.

- **4**. The point (1,-3) is a critical point of the function $f = xy^2 3x^3 + 6y$. It is a
 - a. local minimum.
 - b. local maximum.
 - c. saddle point. Correct Choice
 - d. inflection point.
 - e. The Second Derivative Test fails.

 $f_x = y^2 - 9x^2 \qquad f_y = 2xy + 6 \qquad f_{xx} = -18x \qquad f_{yy} = 2x \qquad f_{xy} = 2y$ $f_{xx}(1,-3) = -18 \qquad f_{yy}(1,-3) = 2 \qquad f_{xy}(1,-3) = -6 \qquad D = f_{xx}f_{yy} - f_{xy}^2 = -36 - 36 = -72$ saddle point

- 5. The dimensions of a closed rectangular box are measured as 70 cm, 50 cm and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
 - **a**. 8
 - **b**. 16
 - **c**. 32
 - **d**. 64
 - e. 128 Correct Choice

 $A = 2xy + 2xz + 2yz \qquad dS = \frac{\partial S}{\partial x} dx + \frac{\partial S}{\partial y} dy + \frac{\partial S}{\partial z} dz = 2(y+z) dx + 2(x+z) dy + 2(x+y) dz$ dA = 2(90)(.2) + 2(110)(.2) + 2(120)(.2) = .4(320) = 128

- 6. Consider the quarter of the cylinder $x^2 + y^2 \le 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the total mass of the quarter cylinder if the density is $\rho = e^{x^2 + y^2}$.
 - **a**. $2\pi(e^4 1)$ Correct Choice
 - **b**. $8\pi(e^4 1)$
 - **c**. $2\pi e^4$
 - **d**. $8\pi e^4$
 - **e**. 4

 $M = \iiint \rho \, dV = \int_0^8 \int_0^{\pi/2} \int_0^2 e^{r^2} r \, dr \, d\theta \, dz = (8) \left(\frac{\pi}{2}\right) \left[\frac{e^{r^2}}{2}\right]_0^2 = 2\pi (e^4 - 1)$

- 7. Consider the quarter of the cylinder $x^2 + y^2 \le 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the *z*- component of the center of mass of the quarter cylinder if the density is $\rho = e^{x^2 + y^2}$.
 - **a**. $2\pi(e^4 1)$
 - **b**. $8\pi(e^4 1)$
 - **c**. $2\pi e^4$
 - **d**. $8\pi e^4$
 - e. 4 Correct Choice

 $z \text{-mom} = \iiint z \rho \, dV = \int_0^8 \int_0^{\pi/2} \int_0^2 z e^{r^2} r \, dr \, d\theta \, dz = \left[\frac{z^2}{2}\right]_0^8 \left(\frac{\pi}{2}\right) \left[\frac{e^{r^2}}{2}\right]_0^2 = 8\pi(e^4 - 1)$ $\bar{z} = \frac{z \text{-mom}}{M} = \frac{8\pi(e^4 - 1)}{2\pi(e^4 - 1)} = 4 \qquad \text{OR by symmetry, } \bar{z} \text{ must be half way up.}$

- 8. Compute the line integral $\int y \, dx x \, dy$ counterclockwise around the semicircle $x^2 + y^2 = 9$ from (3,0) to (-3,0). (HINT: Parametrize the curve.)
 - **a**. -9π Correct Choice
 - **b**. -3π
 - **C**. π
 - **d**. 3*π*
 - **e**. 9π

 $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta) \qquad \vec{v} = (-3\sin\theta, 3\cos\theta) \quad \text{Oriented correctly.}$ $\vec{F} = (y, -x) = (3\sin\theta, -3\cos\theta) \qquad \vec{F} \cdot \vec{v} = -9\sin^2\theta - 9\cos^2\theta = -9$ $\int y \, dx - x \, dy = \int \vec{F} \cdot d\vec{s} = \int \vec{F} \cdot \vec{v} \, d\theta = \int_0^{\pi} -9 \, d\theta = -9\pi$

9. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (y, x)$ along the curve $\vec{r}(t) = \left(e^{\cos(t^2)}, e^{\sin(t^2)}\right)$ for $0 \le t \le \sqrt{\pi}$. (HINT: Find a scalar potential.)

a. $e - \frac{1}{e}$ **b**. $\frac{1}{e} - e$ Correct Choice **c**. $\frac{2}{e}$ **d**. 2e**e**. 0

 $\vec{F} = \vec{\nabla}f \quad \text{for} \quad f = xy \quad A = \vec{r}(0) = (e^{\cos 0}, e^{\sin 0}) = (e, 1) \quad B = \vec{r}(\sqrt{\pi}) = (e^{\cos \pi}, e^{\sin \pi}) = (e^{-1}, 1)$ By the F.T.C.C. $\int_{A}^{B} \vec{F} \cdot d\vec{s} = \int_{A}^{B} \vec{\nabla}f \cdot d\vec{s} = f(B) - f(A) = f(e^{-1}, 1) - f(e, 1) = (e^{-1} \cdot 1) - (e \cdot 1) = \frac{1}{e} - e$

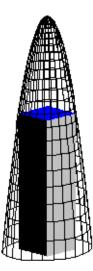
10. Consider the parabolic surface *P* given by $z = x^2 + y^2$ for $z \le 4$ with normal pointing up and in, the disk *D* given by $x^2 + y^2 \le 4$ and z = 4 with normal pointing up, and the volume *V* between them. Given that for a certain vector field \vec{F} we have

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = 14 \quad \text{and} \quad \iint_{D} \vec{F} \cdot d\vec{S} = 3$$
compute
$$\iint_{P} \vec{F} \cdot d\vec{S}.$$
a. 17
b. 11
c. 8
d. -11 Correct Choice
e. -17
By Gauss' Theorem:
$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = \iint_{D} \vec{F} \cdot d\vec{S} - \iint_{P} \vec{F} \cdot d\vec{S}$$
The minus sign reverses the orientation of *P* to point outward. Thus
$$\iint_{P} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot d\vec{S} - \iint_{V} \vec{\nabla} \cdot F \, dV = 3 - 14 = -11$$

11. Find the dimensions and volume of the largest box which sits on the *xy*-plane and whose upper vertices are on the elliptic paraboloid $z + 2x^2 + 3y^2 = 12$.

You do not need to show it is a maximum. You MUST use the Method of Lagrange multipliers.

Half credit for the Method of Elminating the Constraint.



Maximize V = LWH = (2x)(2y)z = 4xyz subject to the constraint $g = z + 2x^2 + 3y^2 = 12$. $\vec{\nabla}V = (4yz, 4xz, 4xy)$ $\vec{\nabla}g = (4x, 6y, 1)$ $\vec{\nabla}V = \lambda\vec{\nabla}g \implies 4yz = \lambda 4x \quad 4xz = \lambda 6y \quad 4xy = \lambda$ $\lambda = 4xy \implies 4yz = 16x^2y \quad 4xz = 24xy^2$ Since $V \neq 0$, we can assume $x \neq 0$ and $y \neq 0$ and $z \neq 0$. So $z = 4x^2 \quad z = 6y^2 \quad 2x^2 = 3y^2$ The constraint becomes: $4x^2 + 2x^2 + 2x^2 = 12$ or $8x^2 = 12$ $x = \sqrt{\frac{3}{2}} \quad y = \sqrt{\frac{2}{3}}x = 1 \quad z = 4x^2 = 6$ The dimensions are: $L = 2x = \sqrt{6} \quad W = 2y = 2 \quad H = z = 6$ The volume is: $V = LWH = \sqrt{6}(2)(6) = 12\sqrt{6}$ **12**. The hemisphere *H* given by

 $x^2 + y^2 + (z - 2)^2 = 9$ for $z \ge 2$

has center (0,0,2) and radius 3. Verify Stokes' Theorem

$$\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial H} \vec{F} \cdot d\vec{s}$$

for this hemisphere H with normal pointing up and out and the vector field $\vec{F} = (yz, -xz, z)$.

Be sure to check and explain the orientations. Use the following steps:
a. The hemisphere may be parametrized by

$$\vec{R}(\theta, \varphi) = (3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2 + 3 \cos \varphi)$$

Compute the surface integral by successively finding:
 $\vec{e}_{\theta}, \vec{e}_{\varphi}, \vec{N}, \vec{\nabla} \times \vec{F}, \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)), \iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$
 $\vec{e}_{\theta} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (-3 \sin \varphi \sin \theta, 3 \sin \varphi \cos \theta, 0) \\ \vec{e}_{\varphi} = \end{vmatrix} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (-3 \sin \varphi \sin \theta, 3 \sin \varphi \cos \theta, 0) \\ \vec{e}_{\varphi} = \begin{vmatrix} \hat{i} \\ (-3 \sin \varphi \sin \theta, 3 \sin \varphi \cos \theta, 0) \\ (3 \cos \varphi \cos \theta, 3 \cos \varphi \sin \theta, -3 \sin \varphi) \end{vmatrix}$
 $\vec{N} = \vec{e}_{\theta} \times \vec{e}_{\varphi} = \hat{i}(-9 \sin^{2}\varphi \cos \theta) - \hat{j}(9 \sin^{2}\varphi \sin \theta) + \hat{k}(-9 \sin \varphi \cos \varphi \sin^{2}\theta - 9 \sin \varphi \cos \varphi \cos^{2}\theta) \\ = (-9 \sin^{2}\varphi \cos \theta, -9 \sin^{2}\varphi \sin \theta, -9 \sin \varphi \cos \varphi)$
 \vec{N} points down and in. Reverse it: $\vec{N} = (9 \sin^{2}\varphi \cos \theta, 9 \sin^{2}\varphi \sin \theta, 9 \sin \varphi \cos \varphi)$
 $\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz, & -xz, & z \end{vmatrix} = \hat{i}(0 - -x) - \hat{j}(0 - y) + \hat{k}(-z - z) = (x, y, -2z)$
 $\vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)) = (3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, -2(2 + 3 \cos \varphi))$
 $\vec{\nabla} \times \vec{F} \cdot \vec{N} = 27 \sin^{3}\varphi \cos^{2}\theta + 27 \sin^{3}\varphi \sin^{2}\theta - 18 \sin \varphi \cos \varphi (2 + 3 \cos \varphi)$
 $= 27 \sin^{3}\varphi - 36 \sin \varphi \cos \varphi - 54 \sin \varphi \cos^{2}\varphi$
 $\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \iint_{H} \vec{\nabla} \times \vec{F} \cdot \vec{N} d\theta d\varphi = \int_{0}^{\pi/2} \int_{0}^{2\pi} (27 \sin^{3}\varphi - 36 \sin \varphi \cos \varphi - 54 \sin \varphi \cos^{2}\varphi) d\theta$ Let $u = \cos \varphi$.
 $= 2\pi \left[-27 \left(\cos \varphi - \frac{\cos^{3}\varphi}{3} \right) + 18 \cos^{2}\varphi + 18 \cos^{3}\varphi \right]_{0}^{\pi/2} = -2\pi \left(-27 \left(1 - \frac{1}{3}\right) + 18 + 18 \right) \right]$
 $= -36\pi$

Problem Continued

b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:

 $\vec{r}(\theta), \ \vec{v}(\theta), \ \vec{F}(\vec{r}(\theta)), \ \oint_{\partial H} \vec{F} \cdot d\vec{s}.$ Recall: $\vec{F} = (yz, -xz, z)$ $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 2)$ $\vec{v}(\theta) = (-3\sin\theta, 3\cos\theta, 0)$

By the right hand rule the upper curve must be traversed counterclockwise which \vec{v} does.

$$\vec{F}(\vec{r}(\theta)) = (6\sin\theta, -6\cos\theta, 2)$$

$$\oint_{\partial C} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} \, d\theta = \int_{0}^{2\pi} -18\sin^{2}\theta - 18\cos^{2}\theta \, d\theta = \int_{0}^{2\pi} -18 \, d\theta = -36\pi$$

They agree!

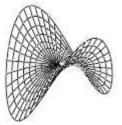
13. The spider web at the right is the graph of the hyperbolic paraboloid z = xy. It may be parametrized as

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2\sin\theta\cos\theta).$

 $= \frac{2\pi}{3} \left[(4)^{3/2} - (1)^{3/2} \right] = \frac{2\pi}{3} [8-1] = \frac{14\pi}{3}$

Find the area of the web for $r \leq \sqrt{3}$.

$$\begin{split} \vec{R}_{r} &= (\cos\theta, \quad \sin\theta, \quad 2r\sin\theta\cos\theta) \\ \vec{R}_{\theta} &= (-r\sin\theta, r\cos\theta, r^{2}(\cos^{2}\theta - \sin^{2}\theta)) \\ \vec{N} &= i(r^{2}\sin\theta(\cos^{2}\theta - \sin^{2}\theta) - 2r^{2}\sin\theta\cos^{2}\theta) - j(r^{2}\cos\theta(\cos^{2}\theta - \sin^{2}\theta) - 2r^{2}\sin^{2}\theta\cos\theta) \\ &+ k(r\cos^{2}\theta - -r\sin^{2}\theta) = (-r^{2}\sin\theta\cos^{2}\theta - r^{2}\sin^{3}\theta, -r^{2}\cos^{3}\theta - r^{2}\sin^{2}\theta\cos\theta, r) \\ &= (-r^{2}\sin\theta, -r^{2}\cos\theta, r) \\ \left| \vec{N} \right| &= \sqrt{r^{4}\sin^{2}\theta + r^{4}\cos^{2}\theta + r^{2}} \sqrt{r^{4} + r^{2}} = r\sqrt{r^{2} + 1} \\ A &= \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \left| \vec{N} \right| drd\theta = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} r(r^{2} + 1)^{1/2} drd\theta = 2\pi \left[\frac{2}{3} \frac{(r^{2} + 1)^{3/2}}{2} \right]_{0}^{\sqrt{3}} \end{split}$$



14. Green's Theorem states:

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint_{\partial R} P \, dx + Q \, dy$$

Verify Green's Theorem for the functions

$$P = -x^2y$$
 and $Q = xy^2$

on the region inside the circle $x^2 + y^2 = 16$. Use the following steps:

a. Compute $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$. Then compute $\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$ by converting to polar coordinates.

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = y^2 - x^2 = x^2 + y^2 = r^2 \qquad dx \, dy = r \, dr \, d\theta$$

$$\iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \, dy = \int_0^{2\pi} \int_0^4 r^2 r \, dr \, d\theta = 2\pi \left[\frac{r^4}{4}\right]_{r=0}^4 = 128\pi$$

b. Parametrize the boundary circle.

Compute *P*, *Q*, *dx* and *dy* on the boundary curve. Then compute $\oint_{\partial R} P dx + Q dy$ around the boundary.

The boundary circle $x^2 + y^2 = 16$ may be parametrized by $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta)$. $P = -x^2y = -64\cos^2\theta\sin\theta$ $Q = xy^2 = 64\cos\theta\sin^2\theta$ $dx = -4\sin\theta d\theta$ $dy = 4\cos\theta d\theta$ $P dx + Q dy = 256\cos^2\theta\sin^2\theta d\theta + 256\cos^2\theta\sin^2\theta d\theta = 512\cos^2\theta\sin^2\theta d\theta$ $\oint_{\partial R} P dx + Q dy = \int_0^{2\pi} 512\cos^2\theta\sin^2\theta d\theta = 128\int_0^{2\pi} \sin^2(2\theta) d\theta = 128\int_0^{2\pi} \frac{1-\cos(4\theta)}{2} d\theta$ $= 64\left[\theta - \frac{\sin(4\theta)}{4}\right]_0^{2\pi} = 128\pi$

The answers are the same!

