Name \qquad ID \qquad

MATH 251
Sections 507
Final Exam
Fall 2006
Solutions
P. Yasskin

$1-10$	$/ 50$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
Total	$/ 110$

1. For the curve $\vec{r}(t)=(t \cos t, t \sin t)$, which of the following is false?
a. The velocity is $\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
b. The speed is $|\vec{v}|=\sqrt{1+t^{2}}$
c. The acceleration is $\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
d. The arclength between $t=0$ and $t=1$ is $L=\int_{0}^{1} t \sqrt{1+t^{2}} d t \quad$ Correct Choice
e. The tangential acceleration is $a_{T}=\frac{t}{\sqrt{1+t^{2}}}$
$\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
$|\vec{v}|=\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}}=\sqrt{\cos ^{2} t+t^{2} \cos ^{2} t+\sin ^{2} t+t^{2} \sin ^{2} t}=\sqrt{1+t^{2}}$
$\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} \sqrt{1+t^{2}} d t$
$a_{T}=\frac{d|\vec{v}|}{d t}=\frac{2 t}{2 \sqrt{1+t^{2}}} \quad$ or
$a_{T}=\vec{a} \cdot \hat{T}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t) \cdot \frac{1}{\sqrt{1+t^{2}}}(\cos t-t \sin t, \sin t+t \cos t)$
$=\frac{1}{\sqrt{1+t^{2}}}[(-2 \sin t-t \cos t)(\cos t-t \sin t)+(2 \cos t-t \sin t)(\sin t+t \cos t)]=\frac{t}{\sqrt{1+t^{2}}}$
2. Find the plane tangent to the surface $x^{2} z^{2}+y^{4}=5$ at the point $(2,1,1)$.
a. $2 x+y+z=6$
b. $2 x+y+z=5$
c. $x+y+2 z=5 \quad$ Correct Choice
d. $x-y+2 z=3$
e. $x-y+2 z=6$
$f=x^{2} z^{2}+y^{4} \quad P=(2,1,1) \quad \vec{\nabla} f=\left(2 x z^{2}, 4 y^{3}, 2 x^{2} z\right) \quad \vec{N}=\left.\vec{\nabla} f\right|_{P}=(4,4,8)$
$\vec{N} \cdot X=\vec{N} \cdot P \quad 4 x+4 y+8 z=8+4+8=20 \quad x+y+2 z=5$
3. Let $L=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y^{2}}{x^{2}+y^{4}}$
a. $\quad L$ exists and $L=1$ by looking at the paths $y=m x$.
b. $\quad L$ does not exist by looking at the paths $y=x$ and $y=\sqrt{x}$.
c. L does not exist by looking at the paths $y=\sqrt{x}$ and $y=-\sqrt{x}$.
d. L does not exist by looking at the paths $x=m y^{2}$. Correct Choice
e. L does not exist by looking at the paths $x=y^{3}$ and $x=-y^{3}$.

Along $y=m x$, we have $L=\lim _{x \rightarrow 0} \frac{x^{2}+m^{2} x^{4}}{x^{2}+m^{4} x^{4}}=\lim _{x \rightarrow 0} \frac{1+m^{2} x^{3}}{1+m^{4} x^{2}}=1$, which proves nothing.
Along $y= \pm \sqrt{x}$, we have $L=\lim _{x \rightarrow 0} \frac{x^{2}+x^{2}}{x^{2}+x^{2}}=1$, which proves nothing.
Along $x=m y^{2}$, we have $L=\lim _{y \rightarrow 0} \frac{m^{2} y^{4}+m y^{4}}{m^{4} y^{4}+y^{4}}=\lim _{y \rightarrow 0} \frac{m^{2}+m}{m^{4}+1}$, which depends on m and proves the limit does not exist.
Along $x= \pm y^{3}$, we have $L=\lim _{y \rightarrow 0} \frac{y^{6} \pm y^{5}}{y^{6}+y^{4}}=\lim _{y \rightarrow 0} \frac{y^{2} \pm y}{y^{2}+1}=0$, which (by itself) proves nothing.
4. The point $(1,-3)$ is a critical point of the function $f=x y^{2}-3 x^{3}+6 y$. It is a
a. local minimum.
b. local maximum.
c. saddle point. Correct Choice
d. inflection point.
e. The Second Derivative Test fails.
$f_{x}=y^{2}-9 x^{2} \quad f_{y}=2 x y+6 \quad f_{x x}=-18 x \quad f_{y y}=2 x \quad f_{x y}=2 y$
$f_{x x}(1,-3)=-18 \quad f_{y y}(1,-3)=2 \quad f_{x y}(1,-3)=-6 \quad D=f_{x x} f_{y y}-f_{x y}^{2}=-36-36=-72$
saddle point
5. The dimensions of a closed rectangular box are measured as $70 \mathrm{~cm}, 50 \mathrm{~cm}$ and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
a. 8
b. 16
c. 32
d. 64
e. 128 Correct Choice
$A=2 x y+2 x z+2 y z \quad d S=\frac{\partial S}{\partial x} d x+\frac{\partial S}{\partial y} d y+\frac{\partial S}{\partial z} d z=2(y+z) d x+2(x+z) d y+2(x+y) d z$
$d A=2(90)(.2)+2(110)(.2)+2(120)(.2)=.4(320)=128$
6. Consider the quarter of the cylinder $x^{2}+y^{2} \leq 4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$.

Find the total mass of the quarter cylinder if the density is $\rho=e^{x^{2}+y^{2}}$.
a. $2 \pi\left(e^{4}-1\right) \quad$ Correct Choice
b. $8 \pi\left(e^{4}-1\right)$
c. $2 \pi e^{4}$
d. $8 \pi e^{4}$
e. 4
$M=\iiint \rho d V=\int_{0}^{8} \int_{0}^{\pi / 2} \int_{0}^{2} e^{r^{2}} r d r d \theta d z=(8)\left(\frac{\pi}{2}\right)\left[\frac{e^{r^{2}}}{2}\right]_{0}^{2}=2 \pi\left(e^{4}-1\right)$
7. Consider the quarter of the cylinder $x^{2}+y^{2} \leq 4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$.

Find the z-component of the center of mass of the quarter cylinder if the density is $\rho=e^{x^{2}+y^{2}}$.
a. $2 \pi\left(e^{4}-1\right)$
b. $8 \pi\left(e^{4}-1\right)$
c. $2 \pi e^{4}$
d. $8 \pi e^{4}$
e. 4 Correct Choice
z-mom $=\iiint z \rho d V=\int_{0}^{8} \int_{0}^{\pi / 2} \int_{0}^{2} z e^{r^{2}} r d r d \theta d z=\left[\frac{z^{2}}{2}\right]_{0}^{8}\left(\frac{\pi}{2}\right)\left[\frac{e^{r^{2}}}{2}\right]_{0}^{2}=8 \pi\left(e^{4}-1\right)$
$\bar{z}=\frac{z-\mathrm{mom}}{M}=\frac{8 \pi\left(e^{4}-1\right)}{2 \pi\left(e^{4}-1\right)}=4 \quad$ OR by symmetry, \bar{z} must be half way up.
8. Compute the line integral $\int y d x-x d y$ counterclockwise around the semicircle $x^{2}+y^{2}=9$ from $(3,0)$ to $(-3,0)$. (HINT: Parametrize the curve.)
a. $-9 \pi \quad$ Correct Choice
b. -3π
c. π
d. 3π
e. 9π
$\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta) \quad \vec{v}=(-3 \sin \theta, 3 \cos \theta) \quad$ Oriented correctly.
$\vec{F}=(y,-x)=(3 \sin \theta,-3 \cos \theta) \quad \vec{F} \cdot \vec{v}=-9 \sin ^{2} \theta-9 \cos ^{2} \theta=-9$
$\int y d x-x d y=\int \vec{F} \cdot d \vec{s}=\int \vec{F} \cdot \vec{v} d \theta=\int_{0}^{\pi}-9 d \theta=-9 \pi$
9. Compute the line integral $\int \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y, x)$ along the curve $\vec{r}(t)=\left(e^{\cos \left(t^{2}\right)}, e^{\sin \left(t^{2}\right)}\right)$ for $0 \leq t \leq \sqrt{\pi}$. (HINT: Find a scalar potential.)
a. $\quad e-\frac{1}{e}$
b. $\frac{1}{e}-e \quad$ Correct Choice
c. $\frac{2}{e}$
d. $2 e$
e. 0
$\vec{F}=\vec{\nabla} f \quad$ for $f=x y \quad A=\vec{r}(0)=\left(e^{\cos 0}, e^{\sin 0}\right)=(e, 1) \quad B=\vec{r}(\sqrt{\pi})=\left(e^{\cos \pi}, e^{\sin \pi}\right)=\left(e^{-1}, 1\right)$
By the F.T.C.C. $\int_{A}^{B} \vec{F} \cdot d \vec{s}=\int_{A}^{B} \vec{\nabla} f \cdot d \vec{s}=f(B)-f(A)=f\left(e^{-1}, 1\right)-f(e, 1)=\left(e^{-1} \cdot 1\right)-(e \cdot 1)=\frac{1}{e}-e$
10. Consider the parabolic surface P given by $z=x^{2}+y^{2}$ for $z \leq 4$ with normal pointing up and in, the disk D given by $x^{2}+y^{2} \leq 4$ and $z=4$ with normal pointing up, and the volume V between them. Given that for a certain vector field \vec{F} we have

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=14 \quad \text { and } \quad \iint_{D} \vec{F} \cdot d \vec{S}=3
$$

compute $\iint_{P} \vec{F} \cdot d \vec{S}$.
a. $\quad 17$
b. 11
c. 8
d. -11 Correct Choice
e. -17

By Gauss' Theorem: $\quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{D} \vec{F} \cdot d \vec{S}-\iint_{P} \vec{F} \cdot d \vec{S}$
The minus sign reverses the orientation of P to point outward. Thus
$\iint_{P} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot d \vec{S}-\iiint_{V} \vec{\nabla} \cdot F d V=3-14=-11$

Work Out: (15 points each. Part credit possible.)

11. Find the dimensions and volume of the largest box which sits on the $x y$-plane and whose upper vertices are on the elliptic paraboloid $z+2 x^{2}+3 y^{2}=12$.

You do not need to show it is a maximum.
You MUST use the Method of Lagrange multipliers.
Half credit for the Method of Elminating the Constraint.

Maximize $V=L W H=(2 x)(2 y) z=4 x y z$ subject to the constraint $g=z+2 x^{2}+3 y^{2}=12$.
$\vec{\nabla} V=(4 y z, 4 x z, 4 x y) \quad \vec{\nabla} g=(4 x, 6 y, 1)$
$\vec{\nabla} V=\lambda \vec{\nabla} g \quad \Rightarrow \quad 4 y z=\lambda 4 x \quad 4 x z=\lambda 6 y \quad 4 x y=\lambda$
$\lambda=4 x y \quad \Rightarrow \quad 4 y z=16 x^{2} y \quad 4 x z=24 x y^{2}$
Since $V \neq 0$, we can assume $x \neq 0$ and $y \neq 0$ and $z \neq 0$.
So $z=4 x^{2} \quad z=6 y^{2} \quad 2 x^{2}=3 y^{2}$
The constraint becomes: $\quad 4 x^{2}+2 x^{2}+2 x^{2}=12$ or $8 x^{2}=12$
$x=\sqrt{\frac{3}{2}} \quad y=\sqrt{\frac{2}{3}} x=1 \quad z=4 x^{2}=6$
The dimensions are: $L=2 x=\sqrt{6} \quad W=2 y=2 \quad H=z=6$
The volume is: $\quad V=L W H=\sqrt{6}(2)(6)=12 \sqrt{6}$
12. The hemisphere H given by

$$
x^{2}+y^{2}+(z-2)^{2}=9 \text { for } z \geq 2
$$

has center $(0,0,2)$ and radius 3 . Verify Stokes' Theorem

$$
\iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial H} \vec{F} \cdot d \vec{s}
$$

Be sure to check and explain the orientations. Use the following steps:
a. The hemisphere may be parametrized by

$$
\vec{R}(\theta, \varphi)=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2+3 \cos \varphi)
$$

Compute the surface integral by successively finding:

$$
\begin{aligned}
& \vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)), \quad \iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S} \\
& \vec{e}_{\theta}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\vec{e}_{\varphi} & \left.=\left\lvert\, \begin{array}{ccc}
-3 \sin \varphi \sin \theta, & 3 \sin \varphi \cos \theta, & 0
\end{array}\right.\right) \\
(3 \cos \varphi \cos \theta, & 3 \cos \varphi \sin \theta, & -3 \sin \varphi)
\end{array}\right| \\
& \vec{N}=\vec{e}_{\theta} \times \vec{e}_{\varphi}=\hat{\imath}\left(-9 \sin ^{2} \varphi \cos \theta\right)-\hat{\jmath}\left(9 \sin ^{2} \varphi \sin \theta\right)+\hat{k}\left(-9 \sin \varphi \cos \varphi \sin ^{2} \theta-9 \sin \varphi \cos \varphi \cos ^{2} \theta\right) \\
& =\left(-9 \sin ^{2} \varphi \cos \theta,-9 \sin ^{2} \varphi \sin \theta,-9 \sin \varphi \cos \varphi\right)
\end{aligned}
$$

\vec{N} points down and in. Reverse it: $\quad \vec{N}=\left(9 \sin ^{2} \varphi \cos \theta, 9 \sin ^{2} \varphi \sin \theta, 9 \sin \varphi \cos \varphi\right)$

$$
\begin{aligned}
& \vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z, & -x z, & z
\end{array}\right|=\hat{\imath}(0--x)-\hat{\jmath}(0-y)+\hat{k}(-z-z)=(x, y,-2 z) \\
& \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi))=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta,-2(2+3 \cos \varphi)) \\
& \vec{\nabla} \times \vec{F} \cdot \vec{N}=27 \sin ^{3} \varphi \cos ^{2} \theta+27 \sin ^{3} \varphi \sin ^{2} \theta-18 \sin \varphi \cos \varphi(2+3 \cos \varphi) \\
& \quad=27 \sin ^{3} \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi
\end{aligned} \begin{aligned}
\iint_{H} \vec{\nabla} & \times \vec{F} \cdot d \vec{S}=\int_{H} \vec{\nabla} \times \vec{F} \cdot \vec{N} d \theta d \varphi=\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(27 \sin ^{3} \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi\right) d \theta d \varphi \\
& =2 \pi \int_{0}^{\pi / 2}\left(27\left(1-\cos ^{2} \varphi\right) \sin \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi\right) d \varphi \quad \text { Let } u=\cos \varphi . \\
& =2 \pi\left[-27\left(\cos \varphi-\frac{\cos ^{3} \varphi}{3}\right)+18 \cos ^{2} \varphi+18 \cos ^{3} \varphi\right]_{0}^{\pi / 2}=-2 \pi\left(-27\left(1-\frac{1}{3}\right)+18+18\right) \\
& =-36 \pi
\end{aligned}
$$

b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:
$\vec{r}(\theta), \quad \vec{v}(\theta), \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial H} \vec{F} \cdot d \vec{s} . \quad$ Recall: $\quad \vec{F}=(y z,-x z, z)$
$\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 2)$
$\vec{v}(\theta)=(-3 \sin \theta, 3 \cos \theta, 0)$
By the right hand rule the upper curve must be traversed counterclockwise which \vec{v} does.
$\vec{F}(\vec{r}(\theta))=(6 \sin \theta,-6 \cos \theta, 2)$
$\oint_{\partial C} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=\int_{0}^{2 \pi}-18 \sin ^{2} \theta-18 \cos ^{2} \theta d \theta=\int_{0}^{2 \pi}-18 d \theta=-36 \pi$
They agree!
13. The spider web at the right is the graph of the hyperbolic paraboloid $z=x y$. It may be parametrized as

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2} \sin \theta \cos \theta\right)
$$

Find the area of the web for $r \leq \sqrt{3}$.
$\vec{R}_{r}=(\cos \theta, \quad \sin \theta, \quad 2 r \sin \theta \cos \theta)$
$\vec{R}_{\theta}=\left(-r \sin \theta, r \cos \theta, r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right)$
$\vec{N}=i\left(r^{2} \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-2 r^{2} \sin \theta \cos ^{2} \theta\right)-j\left(r^{2} \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)--2 r^{2} \sin ^{2} \theta \cos \theta\right)$
$+k\left(r \cos ^{2} \theta--r \sin ^{2} \theta\right)=\left(-r^{2} \sin \theta \cos ^{2} \theta-r^{2} \sin ^{3} \theta,-r^{2} \cos ^{3} \theta-r^{2} \sin ^{2} \theta \cos \theta, r\right)$
$=\left(-r^{2} \sin \theta,-r^{2} \cos \theta, r\right)$
$|\vec{N}|=\sqrt{r^{4} \sin ^{2} \theta+r^{4} \cos ^{2} \theta+r^{2}} \sqrt{r^{4}+r^{2}}=r \sqrt{r^{2}+1}$
$A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}}|\vec{N}| d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r\left(r^{2}+1\right)^{1 / 2} d r d \theta=2 \pi\left[\frac{2}{3} \frac{\left(r^{2}+1\right)^{3 / 2}}{2}\right]_{0}^{\sqrt{3}}$

$$
=\frac{2 \pi}{3}\left[(4)^{3 / 2}-(1)^{3 / 2}\right]=\frac{2 \pi}{3}[8-1]=\frac{14 \pi}{3}
$$

14. Green's Theorem states:

$$
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\partial R} P d x+Q d y
$$

Verify Green's Theorem for the functions

$$
P=-x^{2} y \quad \text { and } \quad Q=x y^{2}
$$

on the region inside the circle $x^{2}+y^{2}=16$.
Use the following steps:

a. Compute $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$.

Then compute $\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ by converting to polar coordinates.
$\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=y^{2}--x^{2}=x^{2}+y^{2}=r^{2} \quad d x d y=r d r d \theta$
$\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{4} r^{2} r d r d \theta=2 \pi\left[\frac{r^{4}}{4}\right]_{r=0}^{4}=128 \pi$
b. Parametrize the boundary circle.

Compute $P, Q, d x$ and $d y$ on the boundary curve.
Then compute $\oint_{\partial R} P d x+Q d y$ around the boundary.
The boundary circle $x^{2}+y^{2}=16$ may be parametrized by $\vec{r}(\theta)=(4 \cos \theta, 4 \sin \theta)$.

$$
\begin{aligned}
& P=-x^{2} y=-64 \cos ^{2} \theta \sin \theta \quad Q=x y^{2}=64 \cos \theta \sin ^{2} \theta \\
& d x=-4 \sin \theta d \theta \quad d y=4 \cos \theta d \theta \\
& P d x+Q d y=256 \cos ^{2} \theta \sin ^{2} \theta d \theta+256 \cos ^{2} \theta \sin ^{2} \theta d \theta=512 \cos ^{2} \theta \sin ^{2} \theta d \theta \\
& \oint_{\partial R} P d x+Q d y=\int_{0}^{2 \pi} 512 \cos ^{2} \theta \sin ^{2} \theta d \theta=128 \int_{0}^{2 \pi} \sin ^{2}(2 \theta) d \theta=128 \int_{0}^{2 \pi} \frac{1-\cos (4 \theta)}{2} d \theta \\
& \quad=64\left[\theta-\frac{\sin (4 \theta)}{4}\right]_{0}^{2 \pi}=128 \pi
\end{aligned}
$$

The answers are the same!

