Name	ID		1-4	/20
MATH 251	Quiz 1	Fall 2006	5	/ 5
Sections 507	Solutions	P. Yasskin	Total	/25

Multiple Choice & Work Out: (5 points each)

1. Find the equation of a sphere if one of its diameters has endpoints (1,0,3) and (7,8,-21).

a. $(x+4)^2 + (y+4)^2 + (z-9)^2 = 169$ **b**. $(x+4)^2 + (y+4)^2 + (z-9)^2 = 13$ **c**. $(x-4)^2 + (y-4)^2 + (z+9)^2 = 169$ Correct Choice **d**. $(x-4)^2 + (y-4)^2 + (z+9)^2 = 13$

e. $(x-4)^2 + (y+4)^2 + (z+9)^2 = 13$

The center is the midpoint: $(p,q,r) = \frac{(1,0,3) + (7,8,-21)}{2} = (4,4,-9)$

The radius is the distance from the center to one endpoint: $R = \sqrt{3^2 + 4^2 + 12^2} = 13$ The circle is: $(x-4)^2 + (y-4)^2 + (z+9)^2 = 169$

- **2**. If \vec{u} points North and \vec{v} points SouthEast, then $\vec{u} \times \vec{v}$ points
 - a. Up (away from the center of the earth)
 - b. Down (toward the center of the earth) Correct Choice
 - $\textbf{c}. \hspace{0.1 cm} \text{SouthWest} \hspace{0.1 cm}$
 - d. WestSouthWest
 - e. EastNorthEast

Put your fingers North with the palm facing SouthEast, your thumb points Down.

3. Find the equation of the plane through the points P = (2, 1, 2), Q = (3, 4, 2) and R = (2, 2, 5). What is the *z*-intercept?

a. 17 Correct Choice
b. 20
c. 23
d. 26
e. 27

$$\overrightarrow{PQ} = Q - P = \langle 1, 3, 0 \rangle$$
 $\overrightarrow{PR} = R - P = \langle 0, 1, 3 \rangle$ $\vec{N} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{vmatrix} = \langle 9, -3, 1 \rangle$
 $\vec{N} \cdot X = \vec{N} \cdot P$ $9x - 3y + z = 9 \cdot 2 - 3 \cdot 1 + 1 \cdot 2 = 17$ $z = -9x + 3y + 17$ *z*-intercept = 17

- **4**. For what value of x is the scalar projection of $\vec{b} = \langle 2, 2x, x+1 \rangle$ onto $\vec{a} = \langle 4, 3, 0 \rangle$ equal to 1?
 - **a.** x = -2 **b.** $x = -\frac{3}{2}$ **c.** x = -1 **d.** $x = -\frac{1}{2}$ Correct Choice **e.** $x = \frac{1}{2}$ $\operatorname{comp}_{\vec{a}}\vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{8 + 6x}{5} = 1$ 8 + 6x = 5 6x = -3 $x = -\frac{1}{2}$
- 5. Find the point where the line (x, y, z) = (1 t, -3 + 2t, 1 2t) intersects the plane (x, y, z) = (2 r s, 1 + 2r, 3) or show they don't intersect.

Equate the line and the plane: 1-t = 2-r-s -3+2t = 1+2r 1-2t = 3 r+s-t = 1 t = -1Solve for r, s and t: $-2r+2t = 4 \implies r = -3$ -2t = 2 s = 3Plug back into the line: (x, y, z) = (1 - (-1), -3 + 2(-1), 1 - 2(-1)) = (2, -5, 3)Check: Plug back into the plane: (x, y, z) = (2 - (-3) - (3), 1 + 2(-3), 3) = (2, -5, 3)