\qquad
\qquad

Fall 2006
Sections 507
Solutions
P. Yasskin

$1-4$	$/ 20$
5	$/ 5$
Total	$/ 25$

Multiple Choice \& Work Out: (5 points each)

1. Find the equation of a sphere if one of its diameters has endpoints $(1,0,3)$ and $(7,8,-21)$.
a. $(x+4)^{2}+(y+4)^{2}+(z-9)^{2}=169$
b. $(x+4)^{2}+(y+4)^{2}+(z-9)^{2}=13$
c. $(x-4)^{2}+(y-4)^{2}+(z+9)^{2}=169$ Correct Choice
d. $(x-4)^{2}+(y-4)^{2}+(z+9)^{2}=13$
e. $(x-4)^{2}+(y+4)^{2}+(z+9)^{2}=13$

The center is the midpoint: $\quad(p, q, r)=\frac{(1,0,3)+(7,8,-21)}{2}=(4,4,-9)$
The radius is the distance from the center to one endpoint: $\quad R=\sqrt{3^{2}+4^{2}+12^{2}}=13$
The circle is: $\quad(x-4)^{2}+(y-4)^{2}+(z+9)^{2}=169$
2. If \vec{u} points North and \vec{v} points SouthEast, then $\vec{u} \times \vec{v}$ points
a. Up (away from the center of the earth)
b. Down (toward the center of the earth) Correct Choice
c. SouthWest
d. WestSouthWest
e. EastNorthEast

Put your fingers North with the palm facing SouthEast, your thumb points Down.
3. Find the equation of the plane through the points $P=(2,1,2), \quad Q=(3,4,2)$ and $R=(2,2,5)$. What is the z-intercept?.
a. 17 Correct Choice
b. 20
c. 23
d. 26
e. 27
$\overrightarrow{P Q}=Q-P=\langle 1,3,0\rangle \quad \overrightarrow{P R}=R-P=\langle 0,1,3\rangle \quad \vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 3 & 0 \\ 0 & 1 & 3\end{array}\right|=\langle 9,-3,1\rangle$

$$
\vec{N} \cdot X=\vec{N} \cdot P \quad 9 x-3 y+z=9 \cdot 2-3 \cdot 1+1 \cdot 2=17 \quad z=-9 x+3 y+17 \quad z \text {-intercept }=17
$$

4. For what value of x is the scalar projection of $\vec{b}=\langle 2,2 x, x+1\rangle$ onto $\vec{a}=\langle 4,3,0\rangle$ equal to 1 ?
a. $x=-2$
b. $x=-\frac{3}{2}$
c. $x=-1$
d. $x=-\frac{1}{2} \quad$ Correct Choice
e. $x=\frac{1}{2}$
$\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}=\frac{8+6 x}{5}=1 \quad 8+6 x=5 \quad 6 x=-3 \quad x=-\frac{1}{2}$
5. Find the point where the line $(x, y, z)=(1-t,-3+2 t, 1-2 t)$ intersects the plane $(x, y, z)=(2-r-s, 1+2 r, 3)$ or show they don't intersect.

$$
1-t=2-r-s
$$

Equate the line and the plane: $\quad-3+2 t=1+2 r$

$$
1-2 t=3
$$

Plug back into the line: $\quad(x, y, z)=(1-(-1),-3+2(-1), 1-2(-1))=(2,-5,3)$ Check:
Plug back into the plane: $\quad(x, y, z)=(2-(-3)-(3), 1+2(-3), 3)=(2,-5,3)$

