\qquad ID. \qquad
MATH 251
Quiz 3
Fall 2006

$1-5$	125

Sections 507
P. Yasskin

Multiple Choice: (5 points each)

1. For the function $f(x, y)=y^{2} \cos (x y)$ which partial derivative is incorrect?
a. $\frac{\partial f}{\partial x}=-y^{3} \sin (x y)$
b. $\frac{\partial f}{\partial y}=2 y \cos (x y)-x y^{2} \sin (x y)$
c. $\frac{\partial^{2} f}{\partial x^{2}}=-y^{4} \cos (x y)$
d. $\frac{\partial^{2} f}{\partial y \partial x}=-3 y^{2} \sin (x y)-x y^{3} \cos (x y)$
e. $\frac{\partial^{2} f}{\partial x \partial y}=-y^{2} \sin (x y)-x y^{3} \cos (x y)$
2. Find the equation of the plane tangent to $z=x^{2} y^{3}$ at the point $(2,1,4)$. Its z-intercept is:
a. 0
b. -24
c. -16
d. 24
e. 4
3. Consider a function $p(x, y)$. If $\quad p(2,3)=3, \quad \frac{\partial p}{\partial x}(2,3)=4, \quad$ and $\quad \frac{\partial p}{\partial y}(2,3)=5$, estimate $p(2.1,2.8)$.
a. 2.4
b. 2.6
c. 2.8
d. 3.2
e. 3.4
4. If the temperature in a room is given by $T=75+x y z$ and a fly is located at $(2,1,4)$, in what unit vector direction should the fly fly in order to decrease the temperature as fast as possible?
a. $\frac{1}{\sqrt{21}}\langle 2,4,1\rangle$
b. $\frac{1}{\sqrt{21}}\langle-2,-4,-1\rangle$
c. $\langle 4,8,2\rangle$
d. $\langle-4,-8,-2\rangle$
e. $\frac{1}{\sqrt{21}}\langle 2,-4,1\rangle$
5. Find the equation of the plane tangent to the surface $x^{2} z^{2}+x y^{3}=31$ at the point $(1,3,2)$. Its z-intercept is:
a. -31
b. 124
c. 120
d. 31
e. 4
