Multiple Choice: (5 points each)

1. For the function \(f(x,y) = y^2 \cos(xy) \) which partial derivative is incorrect?

 a. \(\frac{\partial f}{\partial x} = -y^3 \sin(xy) \)

 b. \(\frac{\partial f}{\partial y} = 2y \cos(xy) - xy^2 \sin(xy) \)

 c. \(\frac{\partial^2 f}{\partial x^2} = -y^4 \cos(xy) \)

 d. \(\frac{\partial^2 f}{\partial y \partial x} = -3y^2 \sin(xy) - xy^3 \cos(xy) \)

 e. \(\frac{\partial^2 f}{\partial x \partial y} = -y^2 \sin(xy) - xy^3 \cos(xy) \)

2. Find the equation of the plane tangent to \(z = x^2y^3 \) at the point \((2,1,4) \).
 Its \(z \)-intercept is:

 a. 0

 b. −24

 c. −16

 d. 24

 e. 4
3. Consider a function \(p(x, y) \). If \(p(2, 3) = 3 \), \(\frac{\partial p}{\partial x}(2, 3) = 4 \), and \(\frac{\partial p}{\partial y}(2, 3) = 5 \), estimate \(p(2.1, 2.8) \).

 a. 2.4
 b. 2.6
 c. 2.8
 d. 3.2
 e. 3.4

4. If the temperature in a room is given by \(T = 75 + xyz \) and a fly is located at \((2, 1, 4) \), in what unit vector direction should the fly fly in order to decrease the temperature as fast as possible?

 a. \(\frac{1}{\sqrt{2T}} \langle 2, 4, 1 \rangle \)
 b. \(\frac{1}{\sqrt{2T}} \langle -2, -4, -1 \rangle \)
 c. \(\langle 4, 8, 2 \rangle \)
 d. \(\langle -4, -8, -2 \rangle \)
 e. \(\frac{1}{\sqrt{2T}} \langle 2, -4, 1 \rangle \)

5. Find the equation of the plane tangent to the surface \(x^2z^3 + xy^3 = 31 \) at the point \((1, 3, 2) \). Its \(z \)-intercept is:

 a. -31
 b. 124
 c. 120
 d. 31
 e. 4