Name \qquad ID \qquad
MATH 251
Quiz 3
Fall 2006

$1-5$	125

Sections 507
Solutions
P. Yasskin

Multiple Choice: (5 points each)

1. For the function $f(x, y)=y^{2} \cos (x y)$ which partial derivative is incorrect?
a. $\frac{\partial f}{\partial x}=-y^{3} \sin (x y)$
b. $\frac{\partial f}{\partial y}=2 y \cos (x y)-x y^{2} \sin (x y)$
c. $\frac{\partial^{2} f}{\partial x^{2}}=-y^{4} \cos (x y)$
d. $\frac{\partial^{2} f}{\partial y \partial x}=-3 y^{2} \sin (x y)-x y^{3} \cos (x y)$
e. $\frac{\partial^{2} f}{\partial x \partial y}=-y^{2} \sin (x y)-x y^{3} \cos (x y) \quad$ Correct Choice

Use product rule and chain rule:
$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(2 y \cos (x y)-x y^{2} \sin (x y)\right)=-2 y^{2} \sin (x y)-y^{2} \sin (x y)-x y^{3} \cos (x y)$
2. Find the equation of the plane tangent to $z=x^{2} y^{3}$ at the point $(2,1,4)$. Its z-intercept is:
a. 0
b. -24
c. -16 Correct Choice
d. 24
e. 4

$$
\begin{aligned}
& f(x, y)=x^{2} y^{3} \quad f(2,1)=4 \\
& \frac{\partial f}{\partial x}=2 x y^{3} \quad \frac{\partial f}{\partial x}(2,1)=4 \\
& \frac{\partial f}{\partial y}=3 x^{2} y^{2} \quad \frac{\partial f}{\partial y}(2,1)=12 \\
& z=f_{\tan }(x, y)=f(2,1)+\frac{\partial f}{\partial x}(2,1)(x-2)+\frac{\partial f}{\partial y}(2,1)(y-1)=4+4(x-2)+12(y-1) \\
& z=4 x+12 y-16 \quad \text { The } \quad z \text {-intercept is }-16
\end{aligned}
$$

3. Consider a function $p(x, y)$. If $\quad p(2,3)=3, \quad \frac{\partial p}{\partial x}(2,3)=4, \quad$ and $\quad \frac{\partial p}{\partial y}(2,3)=5$, estimate $p(2.1,2.8)$.
a. 2.4 Correct Choice
b. 2.6
c. 2.8
d. 3.2
e. 3.4
$p_{\text {tan }}(x, y)=p(2,3)+\frac{\partial p}{\partial x}(2,3)(x-2)+\frac{\partial p}{\partial y}(2,3)(y-3)=3+4(x-2)+5(y-3)$
$p(3.2,1.9) \approx p_{\tan }(2.1,2.8)=3+4(2.1-2)+5(2.8-3)=3+4(.1)+5(-.2)=2.4$
4. If the temperature in a room is given by $T=75+x y z$ and a fly is located at $(2,1,4)$, in what unit vector direction should the fly fly in order to decrease the temperature as fast as possible?
a. $\frac{1}{\sqrt{21}}\langle 2,4,1\rangle$
b. $\frac{1}{\sqrt{21}}\langle-2,-4,-1\rangle \quad$ Correct Choice
c. $\langle 4,8,2\rangle$
d. $\langle-4,-8,-2\rangle$
e. $\frac{1}{\sqrt{21}}\langle 2,-4,1\rangle$
$\vec{\nabla} T=\langle y z, x z, x y\rangle \quad \vec{v}=\left.\vec{\nabla} T\right|_{(2,1,4)}=\langle 4,8,2\rangle \quad|\vec{v}|=\sqrt{16+64+4}=\sqrt{84}=2 \sqrt{21}$
Direction of Max increase is $\hat{v}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{21}}\langle 2,4,1\rangle$.
Direction of Max decrease is $-\hat{v}=\frac{-1}{\sqrt{21}}\langle 2,4,1\rangle$.
5. Find the equation of the plane tangent to the surface $x^{2} z^{2}+x y^{3}=31$ at the point $(1,3,2)$. Its z-intercept is:
a. -31
b. 124
c. 120
d. 31 Correct Choice
e. 4
$P=(1,3,2) \quad F=x^{2} z^{2}+x y^{3} \quad \vec{\nabla} F=\left\langle 2 x z^{2}+y^{3}, 3 x y^{2}, 2 x^{2} z\right\rangle$
$\vec{N}=\left.\vec{\nabla} F\right|_{P}=\langle 2 \cdot 1 \cdot 4+27, \quad 3 \cdot 1 \cdot 9, \quad 2 \cdot 1 \cdot 2\rangle=\langle 35,27,4\rangle$
Tangent plane is $\vec{N} \cdot X=\vec{N} \cdot P \quad$ or $\quad 35 x+27 y+4 z=35 \cdot 1+27 \cdot 3+4 \cdot 2=124$
or $\quad z=31-\frac{35}{4} x-\frac{27}{4} y \quad$ The z-intercept is 31 .
