Name		ID	
MATH 251	Quiz 3	Fall 2006	
Sections 507	Solutions	P. Yasskin	

Multiple Choice: (5 points each)

1. For the function $f(x, y) = y^2 \cos(xy)$ which partial derivative is incorrect?

a.
$$\frac{\partial f}{\partial x} = -y^3 \sin(xy)$$

b. $\frac{\partial f}{\partial y} = 2y \cos(xy) - xy^2 \sin(xy)$
c. $\frac{\partial^2 f}{\partial x^2} = -y^4 \cos(xy)$
d. $\frac{\partial^2 f}{\partial y \partial x} = -3y^2 \sin(xy) - xy^3 \cos(xy)$
e. $\frac{\partial^2 f}{\partial x \partial y} = -y^2 \sin(xy) - xy^3 \cos(xy)$ Correct Choice

Use product rule and chain rule:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (2y \cos(xy) - xy^2 \sin(xy)) = -2y^2 \sin(xy) - y^2 \sin(xy) - xy^3 \cos(xy)$$

2. Find the equation of the plane tangent to $z = x^2y^3$ at the point (2,1,4). Its *z*-intercept is:

a. 0
b. -24
c. -16 Correct Choice
d. 24
e. 4

$$f(x,y) = x^2y^3$$
 $f(2,1) = 4$
 $\frac{\partial f}{\partial x} = 2xy^3$ $\frac{\partial f}{\partial x}(2,1) = 4$
 $\frac{\partial f}{\partial y} = 3x^2y^2$ $\frac{\partial f}{\partial y}(2,1) = 12$
 $z = f_{tan}(x,y) = f(2,1) + \frac{\partial f}{\partial x}(2,1)(x-2) + \frac{\partial f}{\partial y}(2,1)(y-1) = 4 + 4(x-2) + 12(y-1)$
 $z = 4x + 12y - 16$ The z-intercept is -16

- **3**. Consider a function p(x,y). If p(2,3) = 3, $\frac{\partial p}{\partial x}(2,3) = 4$, and $\frac{\partial p}{\partial y}(2,3) = 5$, estimate p(2,1,2,8).
 - a. 2.4 Correct Choice
 - **b**. 2.6
 - **c**. 2.8
 - **d**. 3.2
 - **e**. 3.4

$$p_{\tan}(x,y) = p(2,3) + \frac{\partial p}{\partial x}(2,3)(x-2) + \frac{\partial p}{\partial y}(2,3)(y-3) = 3 + 4(x-2) + 5(y-3)$$
$$p(3.2,1.9) \approx p_{\tan}(2.1,2.8) = 3 + 4(2.1-2) + 5(2.8-3) = 3 + 4(.1) + 5(-.2) = 2.4$$

- 4. If the temperature in a room is given by T = 75 + xyz and a fly is located at (2, 1, 4), in what unit vector direction should the fly fly in order to decrease the temperature as fast as possible?
 - a. $\frac{1}{\sqrt{21}}\langle 2, 4, 1 \rangle$ b. $\frac{1}{\sqrt{21}}\langle -2, -4, -1 \rangle$ Correct Choice
 - **c**. $\langle 4, 8, 2 \rangle$
 - **d**. $\langle -4, -8, -2 \rangle$
 - **e**. $\frac{1}{\sqrt{21}}\langle 2, -4, 1 \rangle$

 $\vec{\nabla}T = \langle yz, xz, xy \rangle \qquad \vec{v} = \vec{\nabla}T \Big|_{(2,1,4)} = \langle 4, 8, 2 \rangle \qquad |\vec{v}| = \sqrt{16 + 64 + 4} = \sqrt{84} = 2\sqrt{21}$ Direction of Max increase is $\hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{\sqrt{21}} \langle 2, 4, 1 \rangle.$ Direction of Max decrease is $-\hat{v} = \frac{-1}{\sqrt{21}} \langle 2, 4, 1 \rangle.$

- **5**. Find the equation of the plane tangent to the surface $x^2z^2 + xy^3 = 31$ at the point (1,3,2). Its *z*-intercept is:
 - **a**. -31
 - **b**. 124
 - **c**. 120
 - d. 31 Correct Choice
 - **e**. 4

$$\begin{array}{ll} P = (1,3,2) & F = x^2 z^2 + x y^3 & \vec{\nabla}F = \langle 2xz^2 + y^3, 3xy^2, 2x^2z \rangle \\ \vec{N} = \vec{\nabla}F \Big|_P = \langle 2 \cdot 1 \cdot 4 + 27, \ 3 \cdot 1 \cdot 9, \ 2 \cdot 1 \cdot 2 \rangle = \langle 35, 27, 4 \rangle \\ \end{array}$$

Tangent plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or $35x + 27y + 4z = 35 \cdot 1 + 27 \cdot 3 + 4 \cdot 2 = 124$
or $z = 31 - \frac{35}{4}x - \frac{27}{4}y$ The *z*-intercept is 31.