\qquad ID. \qquad

Quiz 2
Spring 2007
Sections 509
Solutions
P. Yasskin

$1-4$	$/ 20$
5	$/ 5$
Total	$/ 25$

Multiple Choice \& Work Out: (5 points each)

1. Find the equation of the line through the point $P=(4,3,2)$ in the direction $\vec{v}=(1,2,-1)$. Where does this line pass through the $x y$-plane?
a. $(2,-1,0)$
b. $(6,7,0)$ Correct Choice
c. $(2,1,0)$
d. $(6,-7,0)$
e. $\left(3, \frac{7}{2}, 0\right)$

The line is: $\quad X=P+t \vec{v} \quad$ or $\quad(x, y, z)=(4+t, 3+2 t, 2-t)$
This intersects the $x y$-plane when $z=0$ or $2-t=0$ or $t=2$.
So $\quad x=4+t=6 \quad$ and $\quad y=3+2 t=7$.
2. Find the equation of the plane through the point $P=(1,3,2)$ with normal $\vec{N}=(4,2,-2)$. Where does this plane pass through the z-axis?
a. ($0,0,-3$) Correct Choice
b. $(0,0,-1)$
c. $(0,0,1)$
d. $(0,0,3)$
e. $(0,0,6)$

The line is: $\quad \vec{N} \cdot X=\vec{N} \cdot P \quad$ or $\quad 4 x+2 y-2 z=4 \cdot 1+2 \cdot 3-2 \cdot 2=6$
This intersects the z-axis when $x=y=0$. So $-2 z=6$ or $z=-3$.
3. Classify the curve $x^{2}-y^{2}-6 x-4 y=-6$
a. circle with center $(3,-2)$
b. circle with center $(-3,2)$
c. hyperbola opening left and right
d. hyperbola opening up and down Correct Choice
e. parabola with vertex $(-3,2)$

Complete squares: $\quad\left(x^{2}-6 x+9\right)-\left(y^{2}+4 y+4\right)=-6+9-4=-1$
or $\quad(x-3)^{2}-(y+2)^{2}=-1 \quad$ which is a hyperbola.
Since $(x-3)^{2}+1=(y+2)^{2}$ we have $(y+2)^{2} \geq 1$.
So the hyperbola opens up and down.
4. Classify the surface $x^{2}+y^{2}-4 x-4 y+z=-4$
a. hyperboloid of 1 sheet
b. hyperboloid of 2 sheets
c. hyperbolic paraboloid
d. elliptic paraboloid opening up
e. elliptic paraboloid opening down Correct Choice

Complete squares: $\quad\left(x^{2}-4 x+4\right)+\left(y^{2}+4 y+4\right)+z=-4+4+4=4$
or $\quad z=4-(x-2)^{2}-(y-2)^{2} \quad$ which is a paraboloid.
Since the coefficients of x^{2} and y^{2} are both negative, the paraboloid is elliptic, opening down.
5. Find the point where the line $\frac{x-1}{-1}=\frac{y-5}{2}=z-6$ intersects the plane $3 x-2 y+z=11$. HINT: Use the line to write x and y as functions of z. Solve this on the back of the Scantron. Show all work.
$x-1=-1(z-6) \quad x=-z+7 \quad y-5=2(z-6) \quad y=2 z-7$
Plug into the plane:
$3(-z+7)-2(2 z-7)+z=11 \quad$ or $\quad-3 z+21-4 z+14+z=11 \quad$ or $\quad-6 z=-24$
So $\quad z=4 \quad x=-z+7=-4+7=3 \quad y=2 z-7=2 \cdot 4-7=1$
So the point is: $\quad(x, y, z)=(3,1,4)$
Check: $\quad \frac{x-1}{-1}=\frac{3-1}{-1}=-2 \quad \frac{y-5}{2}=\frac{1-5}{2}=-2 \quad z-6=4-6=-2 \quad$ Good $3 x-2 y+z=3 \cdot 3-2 \cdot 1+4=11 \quad$ Good

