ID_

MATH 251

Quiz 2

Spring 2007

Sections 509

Solutions

P. Yasskin

4 4	/0.0
1-4	/20
5	/5
Total	/25

Multiple Choice & Work Out: (5 points each)

- **1**. Find the equation of the line through the point P = (4,3,2) in the direction $\vec{v} = (1,2,-1)$. Where does this line pass through the xy-plane?
 - **a**. (2,-1,0)
 - **b**. (6,7,0) **Correct Choice**
 - **c**. (2,1,0)
 - **d**. (6,-7,0)
 - **e**. $(3, \frac{7}{2}, 0)$

The line is:
$$X = P + t\vec{v}$$
 or $(x, y, z) = (4 + t, 3 + 2t, 2 - t)$

This intersects the xy-plane when z = 0 or 2 - t = 0 or t = 2.

So
$$x = 4 + t = 6$$
 and $y = 3 + 2t = 7$.

- **2**. Find the equation of the plane through the point P = (1,3,2) with normal $\vec{N} = (4,2,-2)$. Where does this plane pass through the *z*-axis?
 - **Correct Choice a**. (0,0,-3)
 - **b**. (0,0,-1)
 - **c**. (0,0,1)
 - **d**. (0,0,3)
 - **e**. (0,0,6)

The line is:

$$\vec{N} \cdot X = \vec{N} \cdot P$$
 or $4x + 2y - 2z = 4 \cdot 1 + 2 \cdot 3 - 2 \cdot 2 = 6$

This intersects the z-axis when x = y = 0. So -2z = 6 or z = -3.

- **3**. Classify the curve $x^2 y^2 6x 4y = -6$
 - **a**. circle with center (3,-2)
 - **b**. circle with center (-3,2)
 - **c**. hyperbola opening left and right
 - d. hyperbola opening up and down Correct Choice
 - **e**. parabola with vertex (-3,2)

Complete squares:
$$(x^2 - 6x + 9) - (y^2 + 4y + 4) = -6 + 9 - 4 = -1$$

or
$$(x-3)^2 - (y+2)^2 = -1$$
 which is a hyperbola.

Since
$$(x-3)^2 + 1 = (y+2)^2$$
 we have $(y+2)^2 \ge 1$.

So the hyperbola opens up and down.

4. Classify the surface
$$x^2 + y^2 - 4x - 4y + z = -4$$

- a. hyperboloid of 1 sheet
- b. hyperboloid of 2 sheets
- c. hyperbolic paraboloid
- d. elliptic paraboloid opening up
- e. elliptic paraboloid opening down Correct Choice

Complete squares:
$$(x^2 - 4x + 4) + (y^2 + 4y + 4) + z = -4 + 4 + 4 = 4$$

or
$$z = 4 - (x-2)^2 - (y-2)^2$$
 which is a paraboloid.

Since the coefficients of x^2 and y^2 are both negative, the paraboloid is elliptic, opening down.

5. Find the point where the line $\frac{x-1}{-1} = \frac{y-5}{2} = z-6$ intersects the plane 3x-2y+z=11.

HINT: Use the line to write x and y as functions of z.

Solve this on the back of the Scantron. Show all work.

$$x-1 = -1(z-6)$$
 $x = -z + 7$

$$x-1=-1(z-6)$$
 $x=-z+7$ $y-5=2(z-6)$ $y=2z-7$

Plug into the plane:

$$3(-z+7)-2(2z-7)+z=11$$
 or $-3z+21-4z+14+z=11$ or $-6z=-24$

So
$$z = 4$$
 $x = -z + 7 = -4 + 7 = 3$ $y = 2z - 7 = 2 \cdot 4 - 7 = 1$

So the point is: (x, y, z) = (3, 1, 4)

Check:
$$\frac{x-1}{-1} = \frac{3-1}{-1} = -2$$
 $\frac{y-5}{2} = \frac{1-5}{2} = -2$ $z-6 = 4-6 = -2$ Good

$$3x - 2y + z = 3 \cdot 3 - 2 \cdot 1 + 4 = 11$$
 Good