ID_ Name_

MATH 251

Quiz 3

Spring 2007

Sections 509

Solutions

P. Yasskin

1-4	/20
5	/ 5
Total	/25

Multiple Choice & Work Out: (5 points each)

- 1. Find the equation of the plane tangent to the surface $ze^{xy-2} = 3$ at the point (2,1,3). Its *z*-intercept is:
 - **a**. 3
 - **b**. -3
 - **Correct Choice c**. 15
 - **d**. -15
 - **e**. 0

$$P = (2,1,3) F = ze^{xy-2} \vec{\nabla}F = \langle yze^{xy-2}, xze^{xy-2}, e^{xy-2} \rangle \vec{N} = \vec{\nabla}F \Big|_{P} = \langle 3,6,1 \rangle$$

Tangent plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or $3x + 6y + z = 3 \cdot 2 + 6 \cdot 1 + 1 \cdot 3 = 15$

or z = 15 - 3x - 6y The z-intercept is 15.

- **2**. Find the equation of the line perpendicular to the surface $ze^{xy-2} = 3$ at the point (2,1,3). It intersects the *xy*-plane at:
 - **a**. (7, 17, 0)
 - **Correct Choice b**. (-7, -17, 0)
 - **c**. (11, 19, 0)
 - **d**. (-11, -19, 0)
 - **e**. (11, 19, 6)

$$P = (2,1,3) F = ze^{xy-2} \vec{\nabla}F = \langle yze^{xy-2}, xze^{xy-2}, e^{xy-2} \rangle \vec{v} = \vec{\nabla}F \Big|_{P} = \langle 3,6,1 \rangle$$

Normal line is $X = P + t\vec{v} = (2,1,3) + t(3,6,1)$ or (x,y,z) = (2+3t,1+6t,3+t)

The line intersects the xy-plane when z = 0 or 3 + t = 0 or t = -3

(x, y, z) = (2 + 3(-3), 1 + 6(-3), 3 + (-3)) = (-7, -17, 0).

- **3**. If the temperature in a room is given by $T = 75 + xy^2z$ and a fly is located at (2,1,3), in what **unit** vector direction should the fly fly in order to **decrease** the temperature as fast as possible?
 - **a**. (3, 12, 2)
 - **b**. (3,-12,2)
 - **c**. $\langle -3, -12, -2 \rangle$
 - **d**. $\frac{1}{\sqrt{157}} \langle 3, 12, 2 \rangle$
 - e. $\frac{1}{\sqrt{157}}\langle -3, -12, -2 \rangle$ Correct Choice

$$\vec{\nabla}T = \langle y^2 z, 2xyz, xy^2 \rangle$$
 $\vec{v} = \vec{\nabla}T \Big|_{(2,1,3)} = \langle 3, 12, 2 \rangle$ $|\vec{v}| = \sqrt{9 + 144 + 4} = \sqrt{157}$

Direction of Max increase is $\hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{\sqrt{157}} \langle 3, 12, 2 \rangle$.

Direction of Max decrease is $-\hat{v} = \frac{-1}{\sqrt{157}} \langle 3, 12, 2 \rangle$.

- **4.** Which of the following is NOT a critical point of $f(x,y) = (2x x^2)(4y y^2)$?
 - **a**. (0,0)
 - **b**. (0,4)
 - \mathbf{c} . (1,2)
 - **d**. (2,0)
 - **e**. (-2,4) Correct Choice

$$f_x = (2-2x)(4y-y^2) = 0$$
 $f_y = (2x-x^2)(4-2y) = 0$

From $f_x = 0$, either x = 1 or y = 0 or y = 4

Case
$$x = 1$$
: From $f_y = 0$, $(4 - 2y) = 0$ \Rightarrow $y = 2$

Case
$$y = 0$$
: From $f_y = 0$, $(2x - x^2)4 = 0$ \Rightarrow $x = 0$ or $x = 2$

Case
$$y = 4$$
: From $f_y = 0$, $(2x - x^2)(-4) = 0$ \Rightarrow $x = 0$ or $x = 2$

The critical points are: (1,2), (0,0), (2,0), (0,4), (2,4)

OR Simply plug each answer into f_x and f_y

5. Find 3 numbers a, b and c whose sum is 80 for which ab + 2bc + 3ac is a maximum.

Solve on the back of the Scantron.

We need to maximize f = ab + 2bc + 3ac subject to the constraint a + b + c = 80.

$$c = 80 - a - b f = ab + 2b(80 - a - b) + 3a(80 - a - b) = 240a + 160b - 3a^2 - 2b^2 - 4ab$$

$$f_a = 240 - 6a - 4b = 0 f_b = 160 - 4b - 4a = 0$$

$$6a + 4b = 240$$
 $4a + 4b = 160$

Subtract:
$$2a = 80$$
 $a = 40$ Substitute back: $4b = 160 - 4a = 0$ $b = 0$

$$c = 80 - a - b = 40$$

So
$$a = 40, b = 0, c = 40$$