| Name     | Sec |
|----------|-----|
| <u>-</u> |     |

MATH 251

Exam 1

Spring 2010

Sections 511

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

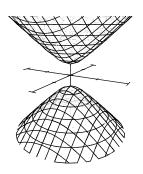
| 1-11 | /66 | 14    | /20  |
|------|-----|-------|------|
| 12   | /10 |       |      |
| 13   | /10 | Total | /106 |

- 1. The points A = (2,-3.4) and B = (4,1,0) are the endpoints of the diameter of a sphere. What is the radius of the sphere?
  - **a**. 2
  - **b**. 3
  - **c**. 4
  - **d**. 5
  - **e**. 6
- 2. Find a vector perpendicular to the plane containing the points

$$P = (2,1,4), Q - (-1,3,2)$$
 and  $R = (3,1,2)$ 

- **a**. (2,-1,2)
- **b**. (-4, 8, -2)
- **c**. (2,4,1)
- **d**. (2,-2,1)
- **e**. (-4, 2, -4)
- **3**. Find the angle between the normals to the planes 3x + 2y 4z = 3 and 2x y + z = 2.
  - **a**. 0°
  - **b**. 30°
  - c.  $45^{\circ}$
  - **d**. 60°
  - **e**. 90°

4. The plot at the right is the graph of which equation?


**a.** 
$$x^2 + y^2 - z^2 = 1$$

**b**. 
$$x^2 + y^2 - z^2 = 0$$

**c.** 
$$x^2 + y^2 - z^2 = -1$$

**d.** 
$$x^2 + y^2 - z = 1$$

**e.** 
$$x^2 + y^2 - z = -1$$



**5**. For the curve  $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^t)$  between A = (1,0,1) and  $B = (e^{-2}, 2\sqrt{2}, e^2)$ , which of the following is FALSE?

**a**. 
$$\vec{v} = \left(-e^{-t}, \sqrt{2}, e^{t}\right)$$
 velocity

**b**. 
$$\vec{a} = (e^{-t}, 0, e^t)$$
 acceleration

**c**. 
$$\frac{ds}{dt} = e^{-t} + e^t$$
 speed

**d**. 
$$a_T = e^{-t} - e^t$$
 tangential acceleration

**e**. 
$$L = e^2 - e^{-2}$$
 arc length between  $A$  and  $B$ 

**6.** Compute  $\int_A^B \vec{F} \cdot d\vec{s}$  with  $\vec{F} = (-z, y, x)$  along the curve  $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^t)$  between A = (1, 0, 1) and  $B = (e^{-2}, 2\sqrt{2}, e^2)$ .

**a**. 
$$e^4 - e^{-4} - 1$$

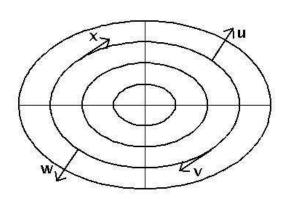
**b**. 
$$e^2 - e^{-2} - 1$$

**c**. 
$$e^4 - e^{-4} - 2$$

**d**. 
$$e^2 - e^{-2} - 2$$

- 7. If  $f(x,y,z) = y^2z^2 + x^2\sin(yz)$ , which of the following is  $\frac{\partial^3 f}{\partial z \partial y \partial x}$ ?
  - **a**.  $-2xyz\sin(yz)$
  - **b**.  $2x\cos(yz) 2xyz\sin(yz)$
  - **c**.  $4yz 2xyz\sin(yz)$
  - **d**.  $2yz + 2x\cos(yz) 2xyz\sin(yz)$
  - e.  $4yz + 2x\cos(yz) 2xyz\sin(yz)$

- **8**. Find the plane tangent to the graph of the function  $z = x^2y^3$  at the point (x,y) = (3,2). What is the *z*-intercept?
  - **a**. −288
  - **b**. -144
  - **c**. -72
  - **d**. 72
  - **e**. 144


- **9.** Find the plane tangent to the graph of the equation xy + xz + yz = 11 at the point (x, y, z) = (3, 2, 1). What is the *z*-intercept?
  - **a**.  $-\frac{11}{5}$
  - **b**.  $\frac{11}{5}$
  - **c**.  $\frac{22}{5}$
  - **d**. 11
  - **e**. 22

- **10**. The pressure in a certain ideal gas is given by  $P=\frac{T}{100V}$  where the temperature is currently  $T=300^{\circ}K$  and increasing at  $2^{\circ}K/\min$  and the volume is currently  $V=4~\mathrm{m}^3$  and increasing at  $\frac{1}{3}~\mathrm{m}^3/\min$ . Is the pressure increasing or decreasing and at what rate?
  - **a**. decreasing at  $\frac{23}{400}$  atm/min
  - **b**. decreasing at  $\frac{27}{400}$  atm/min
  - **c**. increasing at  $\frac{23}{400}$  atm/min
  - **d**. increasing at  $\frac{25}{400}$  atm/min
  - **e**. increasing at  $\frac{27}{400}$  atm/min

11. The graph at the right shows the contour plot of a function f(x,y) as well as several vectors. Which vectors could not be the gradient of f?



- **b**.  $\vec{u}$  and  $\vec{w}$
- **c**.  $\vec{v}$  and  $\vec{w}$
- **d**.  $\vec{v}$  and  $\vec{x}$
- **e**.  $\vec{w}$  and  $\vec{x}$



| Work Out: ( | (Points indicated.  | Part credit   | possible. | Show a  | l work.) |
|-------------|---------------------|---------------|-----------|---------|----------|
| TTOIN Out.  | (i onito inaloatoa. | i air oi oair | POCOIDIO. | Cilow a |          |

**12**. (10 points) A cardboard box is 5 inches long, 4 inches wide and 3 inches high. The cardboard is 0.05 inches thick.

Use differentials to estimate the volume of cardboard used to make the box.

**13**. (10 points) A wire has the shape of the curve  $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^t)$  between A = (1,0,1) and  $B = (e^{-2}, 2\sqrt{2}, e^2)$ . (See problem 5.) Find its mass if its linear density is given by  $\rho = z - x$ .

| 14. | 14. (20 points) Duke Skywater is chasing the Dark Invader through a Dark I at the point $P = (3,2,1)$ and the dark matter density is $\rho = xy + xz + yz$ | Matter field. Duke is currently . |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|     | <b>a</b> . What is the time rate of change of the dark matter density as seen by $\vec{v} = (1,2,3)$ ?                                                     | y Duke if his velocity is         |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     | b. In what unit vector direction should Duke travel to increase the dark possible?                                                                         | matter density as fast as         |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |
|     | c. What is the maximum rate of increase of the dark matter density in a                                                                                    | any unit vector direction?        |
|     |                                                                                                                                                            |                                   |
|     |                                                                                                                                                            |                                   |