\qquad
\qquad

MATH 251 Honors
Sections 200

Exam 1
Solutions

Spring 2010
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-11$	$/ 55$	14	$/ 20$
12	$/ 10$	15	$/ 11$
13	$/ 10$	Total	$/ 106$

1. The points $A=(2,-3.4)$ and $B=(4,1,0)$ are the endpoints of the diameter of a sphere. What is the radius of the sphere?
a. 2
b. 3 Correct Choice
c. 4
d. 5
e. 6

The diameter is $d=d(A, B)=\sqrt{(4-2)^{2}+(1--3)^{2}+(0-4)^{2}}=\sqrt{4+16+16}=6$. The radius is $r=3$.
2. Find a vector perpendicular to the plane containing the points

$$
P=(2,1,4), \quad Q-(-1,3,2) \quad \text { and } \quad R=(3,1,2)
$$

a. $(2,-1,2)$
b. $(-4,8,-2)$
c. $(2,4,1)$ Correct Choice
d. $(2,-2,1)$
e. $(-4,2,-4)$
$\overrightarrow{P Q}=Q-P=(-3,2,-2) \quad \overrightarrow{P R}=R-P=(1,0,-2)$
$\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -3 & 2 & -2 \\ 1 & 0 & -2\end{array}\right|=\hat{\imath}(-4-0)-\hat{\jmath}(6+2)+\hat{k}(0-2)=(-4,-8,-2) \quad$ or any multiple.
3. Find the angle between the normals to the planes $3 x+2 y-4 z=3$ and $2 x-y+z=2$.
a. 0°
b. 30°
c. 45°
d. 60°
e. 90°

Correct Choice
The normals are $\vec{N}_{1}=(3,2,-4)$ and $\vec{N}_{2}=(2,-1,1)$.
Since $\vec{N}_{1} \cdot \vec{N}_{2}=6-2-4=0$, the vectors are perpendicular.
4. The plot at the right is the graph of which equation?
a. $x^{2}+y^{2}-z^{2}=1$
b. $x^{2}+y^{2}-z^{2}=0$
c. $x^{2}+y^{2}-z^{2}=-1 \quad$ Correct Choice
d. $x^{2}+y^{2}-z=1$

e. $x^{2}+y^{2}-z=-1$
(c) is $x^{2}+y^{2}+1=z^{2} \quad$ So $z \geq 1$ or $z \leq-1$.
5. For the curve $\vec{r}(t)=\left(e^{-t}, \sqrt{2} t, e^{t}\right)$ between $A=(1,0,1)$ and $B=\left(e^{-2}, 2 \sqrt{2}, e^{2}\right)$, which of the following is FALSE?
a. $\vec{v}=\left(-e^{-t}, \sqrt{2}, e^{t}\right) \quad$ velocity
b. $\vec{a}=\left(e^{-t}, 0, e^{t}\right) \quad$ acceleration
c. $\frac{d s}{d t}=e^{-t}+e^{t} \quad$ speed
d. $a_{T}=e^{-t}-e^{t} \quad$ tangential acceleration Correct Choice
e. $L=e^{2}-e^{-2} \quad$ arc length between A and B
$\frac{d s}{d t}=|\vec{v}|=\sqrt{e^{-2 t}+2+e^{2 t}}=e^{-t}+e^{t} \quad a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d|\vec{v}|}{d t}=-e^{-t}+e^{t} \quad$ (d is FALSE. $)$
$L=\int_{(1,0,1)}^{\left(e^{-2}, 2 \sqrt{2}, e^{2}\right)} d s=\int_{0}^{2}|\vec{v}| d t=\int_{0}^{2}\left(e^{-t}+e^{t}\right) d t=\left[-e^{-t}+e^{t}\right]_{0}^{2}=-e^{-2}+e^{2}-(-1+1)=e^{2}-e^{-2}$
6. Compute $\int_{A}^{B} \vec{F} \cdot d \vec{s}$ with $\vec{F}=(-z, y, x)$ along the curve $\vec{r}(t)=\left(e^{-t}, \sqrt{2} t, e^{t}\right)$ between $A=(1,0,1)$ and $B=\left(e^{-2}, 2 \sqrt{2}, e^{2}\right)$.
a. $e^{4}-e^{-4}-1$
b. $e^{2}-e^{-2}-1$
c. $e^{4}-e^{-4}-2$
d. $e^{2}-e^{-2}-2$
e. 8 Correct Choice
$\vec{F}=(-z, y, x) \quad \vec{F}(\vec{r}(t))=\left(-e^{t}, \sqrt{2} t, e^{-t}\right) \quad d \vec{s}=\vec{v} d t=\left(-e^{-t}, \sqrt{2}, e^{t}\right)$
$\int_{A}^{B} \vec{F} \cdot d \vec{s}=\int_{0}^{2} \vec{F}(\vec{r}(t)) \cdot \vec{v} d t=\int_{0}^{2}(1+2 t+1) d t=\int_{0}^{2}(2+2 t) d t=\left[2 t+t^{2}\right]_{0}^{2}=8$
7. If $f(x, y, z)=y^{2} z^{2}+x^{2} \sin (y z)$, which of the following is $\frac{\partial^{3} f}{\partial z \partial y \partial x}$?
a. $-2 x y z \sin (y z)$
b. $2 x \cos (y z)-2 x y z \sin (y z) \quad$ Correct Choice
c. $4 y z-2 x y z \sin (y z)$
d. $2 y z+2 x \cos (y z)-2 x y z \sin (y z)$
e. $4 y z+2 x \cos (y z)-2 x y z \sin (y z)$
$\frac{\partial f}{\partial x}=2 x \sin (y z) \quad \frac{\partial^{2} f}{\partial y \partial x}=2 x z \cos (y z) \quad \frac{\partial^{3} f}{\partial z \partial y \partial x}=2 x \cos (y z)-2 x y z \sin (y z)$
8. Find the plane tangent to the graph of the function $z=x^{2} y^{3}$ at the point $(x, y)=(3,2)$. What is the z-intercept?
a. -288 Correct Choice
b. -144
c. -72
d. 72
e. 144
$f(x, y)=x^{2} y^{3} \quad f_{x}(x, y)=2 x y^{3} \quad f_{y}(x, y)=3 x^{2} y^{2}$
$f(3,2)=72 \quad f_{x}(3,2)=48 \quad f_{y}(3,2)=108$
$z=f(3,2)+f_{x}(3,2)(x-3)+f_{y}(3,2)(y-2)=72+48(x-3)+108(y-2)=48 x+108 y-288$
So the z-intercept is $c=-288$.
9. Find the plane tangent to the graph of the equation $x y+x z+y z=11$ at the point $(x, y, z)=(3,2,1)$. What is the z-intercept?
a. $-\frac{11}{5}$
b. $\frac{11}{5}$
c. $\frac{22}{5}$ Correct Choice
d. 11
e. 22

Let $f=x y+x z+y z$. Then $\vec{\nabla} f=(y+z, x+z, x+y)$.
Then the normal at $P=(3,2,1)$ is $\vec{N}=\left.\vec{\nabla} f\right|_{P}=(3,4,5)$.
The equation of the plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or $3 x+4 y+5 z=3 \cdot 3+4 \cdot 2+5 \cdot 1=22$
Solve for $z=-\frac{3}{5} x-\frac{4}{5} y+\frac{22}{5}$. So the z-intercept is $c=\frac{22}{5}$.
10. The pressure in a certain ideal gas is given by $P=\frac{T}{100 \mathrm{~V}}$ where the temperature is currently $T=300^{\circ} \mathrm{K}$ and increasing at $2^{\circ} \mathrm{K} / \mathrm{min}$ and the volume is currently $V=4 \mathrm{~m}^{3}$ and increasing at $\frac{1}{3} \mathrm{~m}^{3} / \mathrm{min}$. Is the pressure increasing or decreasing and at what rate?
a. decreasing at $\frac{23}{400} \mathrm{~atm} / \mathrm{min}$ Correct Choice
b. decreasing at $\frac{27}{400} \mathrm{~atm} / \mathrm{min}$
c. increasing at $\frac{23}{400} \mathrm{~atm} / \mathrm{min}$
d. increasing at $\frac{25}{400} \mathrm{~atm} / \mathrm{min}$
e. increasing at $\frac{27}{400} \mathrm{~atm} / \mathrm{min}$

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{\partial P}{\partial T} \frac{d T}{d t}+\frac{\partial P}{\partial V} \frac{d V}{d t}=\frac{1}{100 V} \frac{d T}{d t}-\frac{T}{100 V^{2}} \frac{d V}{d t} \\
& =\frac{1}{100 \cdot 4} 2-\frac{300}{100 \cdot 4^{2}} \frac{1}{3}=-\frac{23}{400}=-0.0575
\end{aligned}
$$

11. The graph at the right shows the contour plot of a function $f(x, y)$ as well as several vectors. Which vectors could not be the gradient of f ?
a. \vec{u} and \vec{v}
b. \vec{u} and \vec{w}
c. \vec{v} and \vec{w}

d. \vec{v} and $\vec{x} \quad$ Correct Choice
e. \vec{w} and \vec{x}
\vec{v} and \vec{x} are not perpendicular to the level curves.

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (10 points) A cardboard box is 5 inches long, 4 inches wide and 3 inches high.

The cardboard is 0.05 inches thick.
Use differentials to estimate the volume of cardboard used to make the box.

$$
\begin{aligned}
& V=L W H \quad d L=d W=d H=2 \cdot 0.05=0.1 \\
& \begin{aligned}
\Delta V \approx d V & =\frac{\partial V}{\partial L} d L+\frac{\partial V}{\partial W} d W+\frac{\partial V}{\partial H} d H=W H d L+L H d W+L W d H \\
& =4 \cdot 3 \cdot 0.1+5 \cdot 3 \cdot 0.1+5 \cdot 4 \cdot 0.1=4.7
\end{aligned}
\end{aligned}
$$

13. (10 points) A wire has the shape of the curve $\vec{r}(t)=\left(e^{-t}, \sqrt{2} t, e^{t}\right)$ between $A=(1,0,1)$ and $B=\left(e^{-2}, 2 \sqrt{2}, e^{2}\right)$. (See problem 5.) Find its mass if its linear density is given by $\rho=z-x$.
$\rho=z-x \quad \rho(\vec{r}(t))=e^{t}-e^{-t}$
$M=\int_{A}^{B} \rho d s=\int_{0}^{2} \rho(\vec{r}(t))|\vec{v}| d t=\int_{0}^{2}\left(e^{t}-e^{-t}\right)\left(e^{-t}+e^{t}\right) d t=\int_{0}^{2}\left(e^{2 t}-e^{-2 t}\right) d t=\left[\frac{e^{2 t}}{2}-\frac{e^{-2 t}}{-2}\right]_{0}^{2}$
$=\left(\frac{e^{4}}{2}+\frac{e^{-4}}{2}\right)-\left(\frac{1}{2}+\frac{1}{2}\right)=\frac{e^{4}}{2}+\frac{e^{-4}}{2}-1$
14. (20 points) Duke Skywater is chasing the Dark Invader through a Dark Matter field. Duke is currently at the point $P=(3,2,1)$ and the dark matter density is $\rho=x y+x z+y z$.
a. What is the time rate of change of the dark matter density as seen by Duke if his velocity is $\vec{v}=(1,2,3)$?
$\vec{\nabla} \rho=\left.(y+z, x+z, x+y) \quad \vec{\nabla} \rho\right|_{P}=(3,4,5) \quad \frac{d \rho}{d t}=\vec{v} \cdot \vec{\nabla} \rho=1 \cdot 3+2 \cdot 4+3 \cdot 5=26$
b. In what unit vector direction should Duke travel to increase the dark matter density as fast as possible?

The direction of maximum increase is $\left.\vec{\nabla} \rho\right|_{P}=(3,4,5)$ and $|\vec{\nabla} \rho|=\sqrt{9+16+25}=5 \sqrt{2}$.
So the unit vector is $\frac{\vec{\nabla} \rho}{|\vec{\nabla} \rho|}=\left(\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
c. What is the maximum rate of increase of the dark matter density in any unit vector direction?

The maximum rate of increase is $|\vec{\nabla} \rho|=5 \sqrt{2}$.
15. (11 points) For each of the following limits, say whether or not the limit exists.

If it exists, give its value and prove it.
If it does not exist, give a counter example.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$

$$
\begin{aligned}
& \lim _{y=m x, x \rightarrow 0} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2} m x}{x^{4}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{m x}{x^{2}+m^{2}}=\frac{0}{m^{2}}=0 \\
& \lim _{y=m x^{2}, x \rightarrow 0} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2} m x^{2}}{x^{4}+m^{2} x^{4}}=\lim _{x \rightarrow 0} \frac{m}{1+m^{2}}=\frac{m}{1+m^{2}}
\end{aligned}
$$

Since they are not equal when $m \neq 0$, the limit does not exist.
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+x^{2} y^{4}}{x^{2}+y^{4}}$

For $\quad(x, y) \neq(0,0), \quad \frac{x^{4}+x^{2} y^{4}}{x^{2}+y^{4}}=\frac{x^{2}\left({ }^{2}+y^{4}\right)}{x^{2}+y^{4}}=x^{2}$
So $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+x^{2} y^{4}}{x^{2}+y^{4}}=\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$ and the limit exists.
c. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$

In polar coordinates,
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=\lim _{r \rightarrow 0, \theta \text { arbitrary }} \frac{r^{2} \cos ^{2} \theta r \sin \theta}{r^{2}}=\lim _{r \rightarrow 0, \theta \text { arbitrary }} r \cos ^{2} \theta \sin \theta$
Since $r \rightarrow 0$ and $\cos ^{2} \theta \sin \theta$ is bounded,
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0 \quad$ and the limit exists.

