Name		Sec				
			1-11	/66	14	/20
MATH 251	Exam 1	Spring 2010	12	/10		
Sections 511	Solutions	P. Yasskin				
Multiple Choice: (6 points each. No part credit.)			13	/10	Total	/106

1. The points A = (2, -3, 4) and B = (4, 1, 0) are the endpoints of the diameter of a sphere. What is the radius of the sphere?

- a. 2
 b. 3 Correct Choice
 c. 4
- **d**. 5
- **e**. 6

The diameter is $d = d(A,B) = \sqrt{(4-2)^2 + (1-3)^2 + (0-4)^2} = \sqrt{4+16+16} = 6$. The radius is r = 3.

2. Find a vector perpendicular to the plane containing the points

 $P = (2, 1, 4), \quad Q - (-1, 3, 2) \text{ and } R = (3, 1, 2)$

- **a**. (2,-1,2)
- **b**. (-4, 8, -2)
- **c**. (2,4,1) Correct Choice
- **d**. (2, -2, 1)
- **e**. (-4, 2, -4)

$$\overrightarrow{PQ} = Q - P = (-3, 2, -2) \qquad \overrightarrow{PR} = R - P = (1, 0, -2)$$

$$\overrightarrow{N} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 2 & -2 \\ 1 & 0 & -2 \end{vmatrix} = \hat{i}(-4 - 0) - \hat{j}(6 + 2) + \hat{k}(0 - 2) = (-4, -8, -2) \text{ or any multiple.}$$

- **3**. Find the angle between the normals to the planes 3x + 2y 4z = 3 and 2x y + z = 2.
 - **a**. 0°
 - **b**. 30°
 - **c**. 45°
 - **d**. 60°
 - e. 90° Correct Choice

The normals are $\vec{N}_1 = (3, 2, -4)$ and $\vec{N}_2 = (2, -1, 1)$.

Since $\vec{N}_1 \cdot \vec{N}_2 = 6 - 2 - 4 = 0$, the vectors are perpendicular.

- 4. The plot at the right is the graph of which equation?
 - **a.** $x^{2} + y^{2} z^{2} = 1$ **b.** $x^{2} + y^{2} - z^{2} = 0$ **c.** $x^{2} + y^{2} - z^{2} = -1$ Correct Choice **d.** $x^{2} + y^{2} - z = 1$ **e.** $x^{2} + y^{2} - z = -1$

(c) is
$$x^2 + y^2 + 1 = z^2$$
 So $z \ge 1$ or $z \le -1$.

- 5. For the curve $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^t)$ between A = (1, 0, 1) and $B = (e^{-2}, 2\sqrt{2}, e^2)$, which of the following is FALSE?
 - a. $\vec{v} = (-e^{-t}, \sqrt{2}, e^t)$ velocity b. $\vec{a} = (e^{-t}, 0, e^t)$ acceleration c. $\frac{ds}{dt} = e^{-t} + e^t$ speed d. $a_T = e^{-t} - e^t$ tangential acceleration Correct Choice e. $L = e^2 - e^{-2}$ arc length between *A* and *B*

$$\frac{ds}{dt} = |\vec{v}| = \sqrt{e^{-2t} + 2 + e^{2t}} = e^{-t} + e^t \qquad a_T = \frac{d^2s}{dt^2} = \frac{d|v|}{dt} = -e^{-t} + e^t \quad (\text{d is FALSE.})$$

$$L = \int_{(1,0,1)}^{(e^{-2},2\sqrt{2},e^2)} ds = \int_0^2 |\vec{v}| dt = \int_0^2 (e^{-t} + e^t) dt = [-e^{-t} + e^t]_0^2 = -e^{-2} + e^2 - (-1+1) = e^2 - e^{-2}$$

- 6. Compute $\int_{A}^{B} \vec{F} \cdot d\vec{s}$ with $\vec{F} = (-z, y, x)$ along the curve $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^{t})$ between A = (1, 0, 1) and $B = (e^{-2}, 2\sqrt{2}, e^{2})$.
 - **a**. $e^4 e^{-4} 1$
 - **b**. $e^2 e^{-2} 1$
 - **c**. $e^4 e^{-4} 2$
 - **d**. $e^2 e^{-2} 2$
 - e. 8 Correct Choice

$$\vec{F} = (-z, y, x) \qquad \vec{F}(\vec{r}(t)) = (-e^t, \sqrt{2}t, e^{-t}) \qquad d\vec{s} = \vec{v} dt = (-e^{-t}, \sqrt{2}, e^t)$$
$$\int_A^B \vec{F} \cdot d\vec{s} = \int_0^2 \vec{F}(\vec{r}(t)) \cdot \vec{v} dt = \int_0^2 (1 + 2t + 1) dt = \int_0^2 (2 + 2t) dt = [2t + t^2]_0^2 = 8$$

7. If $f(x, y, z) = y^2 z^2 + x^2 \sin(yz)$, which of the following is $\frac{\partial^3 f}{\partial z \partial y \partial x}$?

a.
$$-2xyz\sin(yz)$$

- **b.** $2x\cos(yz) 2xyz\sin(yz)$ Correct Choice
- **c**. $4yz 2xyz\sin(yz)$
- $d. \quad 2yz + 2x\cos(yz) 2xyz\sin(yz)$
- $e. \quad 4yz + 2x\cos(yz) 2xyz\sin(yz)$

$$\frac{\partial f}{\partial x} = 2x\sin(yz) \qquad \frac{\partial^2 f}{\partial y \partial x} = 2xz\cos(yz) \qquad \frac{\partial^3 f}{\partial z \partial y \partial x} = 2x\cos(yz) - 2xyz\sin(yz)$$

- **8**. Find the plane tangent to the graph of the function $z = x^2y^3$ at the point (x,y) = (3,2). What is the *z*-intercept?
 - a. -288 Correct Choice b. -144 c. -72 d. 72 e. 144 $f(x,y) = x^2y^3 f_x(x,y) = 2xy^3 f_y(x,y) = 3x^2y^2$

 $f(3,2) = 72 \quad f_x(3,2) = 48 \quad f_y(3,2) = 108$ $z = f(3,2) + f_x(3,2)(x-3) + f_y(3,2)(y-2) = 72 + 48(x-3) + 108(y-2) = 48x + 108y - 288$ So the *z*-intercept is c = -288.

9. Find the plane tangent to the graph of the equation xy + xz + yz = 11 at the point (x, y, z) = (3, 2, 1). What is the *z*-intercept?

a.
$$-\frac{11}{5}$$

b. $\frac{11}{5}$
c. $\frac{22}{5}$ Correct Choice
d. 11
e. 22

Let f = xy + xz + yz. Then $\vec{\nabla}f = (y + z, x + z, x + y)$. Then the normal at P = (3, 2, 1) is $\vec{N} = \vec{\nabla}f \Big|_P = (3, 4, 5)$. The equation of the plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or $3x + 4y + 5z = 3 \cdot 3 + 4 \cdot 2 + 5 \cdot 1 = 22$ Solve for $z = -\frac{3}{5}x - \frac{4}{5}y + \frac{22}{5}$. So the *z*-intercept is $c = \frac{22}{5}$.

- **10**. The pressure in a certain ideal gas is given by $P = \frac{T}{100V}$ where the temperature is currently $T = 300^{\circ}K$ and increasing at $2^{\circ}K/\min$ and the volume is currently $V = 4 \text{ m}^3$ and increasing at $\frac{1}{3} \text{ m}^3/\min$. Is the pressure increasing or decreasing and at what rate?
 - a. decreasing at $\frac{23}{400}$ atm/min Correct Choice b. decreasing at $\frac{27}{400}$ atm/min c. increasing at $\frac{23}{400}$ atm/min d. increasing at $\frac{25}{400}$ atm/min e. increasing at $\frac{27}{400}$ atm/min $\frac{dP}{dt} = \frac{\partial P}{\partial T} \frac{dT}{dt} + \frac{\partial P}{\partial V} \frac{dV}{dt} = \frac{1}{100V} \frac{dT}{dt} - \frac{T}{100V^2} \frac{dV}{dt}$

$$= \frac{1}{100 \cdot 4} 2 - \frac{300}{100 \cdot 4^2} \frac{1}{3} = -\frac{23}{400} = -0.0575$$

- 11. The graph at the right shows the contour plot of a function *f*(*x*, *y*) as well as several vectors. Which vectors could not be the gradient of *f* ?
 - **a**. \vec{u} and \vec{v}
 - **b**. \vec{u} and \vec{w}
 - **c**. \vec{v} and \vec{w}
 - **d**. \vec{v} and \vec{x} Correct Choice
 - **e**. \vec{w} and \vec{x}

 \vec{v} and \vec{x} are not perpendicular to the level curves.

12. (10 points) A cardboard box is 5 inches long, 4 inches wide and 3 inches high.The cardboard is 0.05 inches thick.

Use differentials to estimate the volume of cardboard used to make the box.

$$V = LWH \qquad dL = dW = dH = 2 \cdot 0.05 = 0.1$$
$$\Delta V \approx dV = \frac{\partial V}{\partial L} dL + \frac{\partial V}{\partial W} dW + \frac{\partial V}{\partial H} dH = WH dL + LH dW + LW dH$$
$$= 4 \cdot 3 \cdot 0.1 + 5 \cdot 3 \cdot 0.1 + 5 \cdot 4 \cdot 0.1 = 4.7$$

13. (10 points) A wire has the shape of the curve $\vec{r}(t) = (e^{-t}, \sqrt{2}t, e^t)$ between A = (1, 0, 1) and $B = (e^{-2}, 2\sqrt{2}, e^2)$. (See problem 5.) Find its mass if its linear density is given by $\rho = z - x$.

$$\rho = z - x \qquad \rho(\vec{r}(t)) = e^{t} - e^{-t}$$

$$M = \int_{A}^{B} \rho \, ds = \int_{0}^{2} \rho(\vec{r}(t)) |\vec{v}| \, dt = \int_{0}^{2} (e^{t} - e^{-t})(e^{-t} + e^{t}) \, dt = \int_{0}^{2} (e^{2t} - e^{-2t}) \, dt = \left[\frac{e^{2t}}{2} - \frac{e^{-2t}}{-2}\right]_{0}^{2}$$

$$= \left(\frac{e^{4}}{2} + \frac{e^{-4}}{2}\right) - \left(\frac{1}{2} + \frac{1}{2}\right) = \frac{e^{4}}{2} + \frac{e^{-4}}{2} - 1$$

- 14. (20 points) Duke Skywater is chasing the Dark Invader through a Dark Matter field. Duke is currently at the point P = (3,2,1) and the dark matter density is $\rho = xy + xz + yz$.
 - **a**. What is the time rate of change of the dark matter density as seen by Duke if his velocity is $\vec{v} = (1,2,3)$?

$$\vec{\nabla}\rho = (y + z, x + z, x + y)$$
 $\vec{\nabla}\rho\Big|_{P} = (3, 4, 5)$ $\frac{d\rho}{dt} = \vec{v} \cdot \vec{\nabla}\rho = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 = 26$

b. In what **unit** vector direction should Duke travel to increase the dark matter density as fast as possible?

The direction of maximum increase is $\vec{\nabla}\rho|_{p} = (3,4,5)$ and $\left|\vec{\nabla}\rho\right| = \sqrt{9+16+25} = 5\sqrt{2}$. So the unit vector is $\frac{\vec{\nabla}\rho}{\left|\vec{\nabla}\rho\right|} = \left(\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

c. What is the maximum rate of increase of the dark matter density in any unit vector direction?

The maximum rate of increase is $|\vec{\nabla}\rho| = 5\sqrt{2}$.