Name \qquad Sec \qquad
MATH 251
Final
Spring 2010
Sections 511
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-13$	$/ 65$	15	$/ 10$
14	$/ 21$	16	$/ 10$
		Total	$/ 106$

1. Find the angle between the vectors $\vec{u}=(2,2,1)$ and $\vec{v}=(1,2,2)$.
a. $\arccos (8 / 9)$
b. $\arccos (8 / 3)$
c. $\arccos (\sqrt{8} / 9)$
d. $\arccos (3 / \sqrt{8})$
e. $\arccos (3 / 8)$
2. At the point (x, y, z) where the line $\vec{r}(t)=(1-t, t, 2-2 t)$ intersects the plane $x-2 y+3 z=16$, we have $x+y+z=$
a. -2
b. 2
c. 3
d. 5
e. 16
3. If a jet flies around the world from West to East, directly above the equator, in what direction does its unit binormal \hat{B} point?
a. Down (toward the center of the earth)
b. Up (away from the center of the earth)
c. North
d. South
e. West
4. Find the z-intercept of the plane tangent to the surface $\frac{x y}{z}=1$ at the point $(2,3,6)$.
a. 6
b. $\frac{1}{6}$
c. 5
d. -5
e. -6
5. The temperature in an ideal gas is given by $T=\kappa \frac{P}{\rho}$ where κ is a constant, P is the pressure and ρ is the density. At a certain point $Q=(3,2,1)$, we have

$$
\begin{array}{ll}
P(Q)=8 & \vec{\nabla} P(Q)=(4,-2,-4) \\
\rho(Q)=2 & \vec{\nabla} \rho(Q)=(-1,4,2)
\end{array}
$$

So at the point Q, the temperature is $T(Q)=4 \kappa$ and its gradient is $\vec{\nabla} T(Q)=$
a. $\kappa(-8.5,6,9)$
b. $\kappa(4,-9,-6)$
c. $\kappa(3,2,-2)$
d. $\kappa\left(\frac{1}{2}, 2\right)$
e. $\kappa\left(-\frac{1}{2}, 2\right)$
6. If the temperature in a room is $T=x y z^{2}$, find the rate of change of the temperature as seen by a fly who is located at $(3,2,1)$ and has velocity $(1,2,3)$.
a. $\quad 32$
b. 36
c. 44
d. 48
e. 52
7. Find the volume below $z=x y$ above the region between the curves $y=3 x$ and $y=x^{2}$.
a. $\frac{81}{2}$
b. $\frac{81}{4}$
c. $\frac{81}{8}$
d. $\frac{243}{2}$
e. $\frac{243}{8}$
8. Compute $\iint_{C} e^{-x^{2}-y^{2}} d x d y$ over the disk enclosed in the circle $x^{2}+y^{2}=4$.
a. $\quad \frac{\pi}{2}\left(1-e^{-4}\right)$
b. $\pi\left(1-e^{-4}\right)$
c. $\frac{\pi}{2} e^{-4}$
d. πe^{-4}
e. $2 \pi e^{-4}$
9. Find the mass of 2 loops of the helical ramp parametrized by

$$
\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 4 \theta) \text { for } r \leq 3
$$

if the density is $\rho=\sqrt{x^{2}+y^{2}}$.
a. 40π
b. 120π
c. 200π

d. $\frac{500}{3} \pi$
e. $\frac{244}{3} \pi \quad$ Correct Choice
10. Find the flux of $\vec{F}=(y,-x, 2)$ through the helical ramp of problem 9 oriented up.
a. 4π
b. $\frac{8}{3} \pi$
c. 216π
d. 108π Correct Choice
e. $\frac{1024}{3} \pi$
11. Compute $\int_{(2,1)}^{(3,2)} \vec{F} \cdot d \vec{s}$ for $\vec{F}=\left(2 x y, x^{2}\right)$ along the curve $\vec{r}(t)=\left(\left(2+t^{2}\right) e^{\sin \pi t},\left(1+t^{2}\right) e^{\sin 2 \pi t}\right)$. HINT: Find a scalar potential.
a. $\quad 12$
b. $\quad 14$
c. 22
d. $\sqrt{2}$
e. $15-4 \sqrt{2}$
12. Compute $\oint(2 x \sin y-5 y) d x+\left(x^{2} \cos y-4 x\right) d y$ counterclockwise around the cross shown.

HINT: Use Green's Theorem.
a. -45
b. -10
c. 5
d. 10
e. 45
13. Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ for $\vec{F}=(-y z, x z, x y z)$ over the quartic surface $z=\left(x^{2}+y^{2}\right)^{2}$ for $z \leq 16$ oriented down and out. The surface may be parametrized by

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{4}\right)
$$

HINT: Use Stokes' Theorem.
a. -128π
b. -64π
C. -32π
d. 32π

e. 64π
14. (21 points) Verify Gauss' Theorem $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right)$ and the solid V above the cone C given by $z=\sqrt{x^{2}+y^{2}}$ or parametrized by $R(r, \theta)=(r \cos \theta, r \sin \theta, r)$, below the disk D given by $x^{2}+y^{2} \leq 9$ and $z=3$.

Be sure to check and explain the orientations.
Use the following steps:
a. (4 pts) Compute the volume integral by successively finding:

$$
\vec{\nabla} \cdot \vec{F}, \quad d V, \quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V
$$

b. (8 pts) Compute the surface integral over the disk by parametrizing the disk and successively finding:

$$
\vec{R}(r, \theta), \quad \vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{F}(\vec{R}(r, \theta)), \quad \iint_{D} \vec{F} \cdot d \vec{S}
$$

Recall: $\quad \vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right)$ and C is the cone parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.
c. (7 pts) Compute the surface integral over the cone C by successively finding: $\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{F}(\vec{R}(r, \theta)), \iint_{C} \vec{F} \cdot d \vec{S}$
d. (2 pts) Combine $\iint_{D} \vec{F} \cdot d \vec{S}$ and $\iint_{C} \vec{F} \cdot d \vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d \vec{S}$
15. (10 points) Find the average value of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ within the solid cylinder $x^{2}+y^{2} \leq 9$ for $0 \leq z \leq 4$.
16. (10 points) Find the value(s) of R so that the ellipsoid $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=R^{2}$ is tangent to the plane $\frac{1}{2} x+\frac{4}{3} y+2 z=36$.
HINT: Their normal vectors must be parallel.

