Name		Sec				
			2,4-13	/55	16	/10
MATH 251 Honors	Final	Spring 2010	14	/21	17	/10
Sections 200		P. Yasskin				
Multiple Choice: (5 points each. No part credit.)			15	/10	Total	/106

1. Honors students, skip this question. Do not bubble anything on the scantron.

- 2. At the point (x, y, z) where the line $\vec{r}(t) = (1 t, t, 2 2t)$ intersects the plane x 2y + 3z = 16, we have x + y + z =
 - **a**. -2
 - **b**. 2
 - **c**. 3
 - **d**. 5
 - **e**. 16

3. Honors students, skip this question. Do not bubble anything on the scantron.

4. Find the *z*-intercept of the plane tangent to the surface $\frac{xy}{z} = 1$ at the point (2,3,6).

- **a**. 6
- **b**. $\frac{1}{6}$
- **c**. 5
- **d**. -5
- **e**. −6

5. The temperature in an ideal gas is given by $T = \kappa \frac{P}{\rho}$ where κ is a constant, *P* is the pressure and ρ is the density. At a certain point Q = (3, 2, 1), we have

$$P(Q) = 8 \qquad \vec{\nabla} P(Q) = (4, -2, -4)$$

$$\rho(Q) = 2 \qquad \vec{\nabla} \rho(Q) = (-1, 4, 2)$$

So at the point Q, the temperature is $T(Q) = 4\kappa$ and its gradient is $\vec{\nabla}T(Q) =$

a. $\kappa(-8.5, 6, 9)$

b.
$$\kappa(4, -9, -6)$$

- **c**. $\kappa(3, 2, -2)$
- **d**. $\kappa\left(\frac{1}{2},2\right)$
- $e. \quad \kappa\left(-\frac{1}{2},2\right)$

- 6. If the temperature in a room is $T = xyz^2$, find the rate of change of the temperature as seen by a fly who is located at (3,2,1) and has velocity (1,2,3).
 - **a**. 32
 - **b**. 36
 - **c**. 44
 - **d**. 48
 - **e**. 52

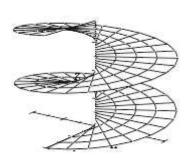
- 7. Find the volume below z = xy above the region between the curves y = 3x and $y = x^2$.
 - **a**. $\frac{81}{2}$ **b**. $\frac{81}{4}$ **c**. $\frac{81}{8}$
 - **d**. $\frac{243}{2}$
 - e. $\frac{243}{8}$

- 8. Compute $\iint_C e^{-x^2-y^2} dx dy$ over the disk enclosed in the circle $x^2 + y^2 = 4$.
 - **a**. $\frac{\pi}{2}(1-e^{-4})$
 - **b**. $\pi(1-e^{-4})$
 - **c**. $\frac{\pi}{2}e^{-4}$
 - **d**. πe^{-4}
 - **e**. $2\pi e^{-4}$

9. Find the mass of 2 loops of the helical ramp parametrized by

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 4\theta)$ for $r \le 3$ if the density is $\rho = \sqrt{x^2 + y^2}$.

- **a**. 40π
- **b**. 120π
- **c**. 200π
- **d**. $\frac{500}{3}\pi$
- **e**. $\frac{244}{3}\pi$ Correct Choice



- **10**. Find the flux of $\vec{F} = (y, -x, 2)$ through the helical ramp of problem 9 oriented up.
 - **a**. 4π
 - **b**. $\frac{8}{3}\pi$
 - **c**. 216π
 - **d**. 108π Correct Choice

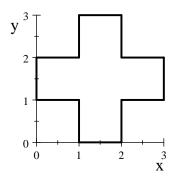
e.
$$\frac{1024}{3}\pi$$

- **11.** Compute $\int_{(2,1)}^{(3,2)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2xy, x^2)$ along the curve $\vec{r}(t) = ((2+t^2)e^{\sin \pi t}, (1+t^2)e^{\sin 2\pi t})$. HINT: Find a scalar potential.
 - **a**. 12
 - **b**. 14
 - **c**. 22
 - **d**. $\sqrt{2}$
 - **e**. $15 4\sqrt{2}$

12. Compute $\oint (2x \sin y - 5y) dx + (x^2 \cos y - 4x) dy$

counterclockwise around the cross shown. HINT: Use Green's Theorem.

- **a**. -45
- **b**. -10
- **c**. 5
- **d**. 10
- **e**. 45

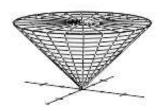


13.	Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ for $\vec{F} = (-yz, xz, xyz)$			
	over the quartic surface $z = (x^2 + y^2)^2$ for $z \le 16$			
	oriented down and out. The surface may be parametrized by			
	$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^4)$			

HINT: Use Stokes' Theorem.

- **a**. -128π
- **b**. -64π
- **c**. −32*π*
- **d**. 32π
- **e**. 64π

14. (21 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = (4xz^3, 4yz^3, z^4)$ and the solid *V* above the cone *C* given by $z = \sqrt{x^2 + y^2}$ or parametrized by $R(r, \theta) = (r \cos \theta, r \sin \theta, r)$, below the disk *D* given by $x^2 + y^2 \le 9$ and z = 3. Be sure to check and explain the orientations. Use the following steps:



a. (4 pts) Compute the volume integral by successively finding:

$$\vec{\nabla} \cdot \vec{F}, \quad dV, \quad \iiint\limits_V \vec{\nabla} \cdot \vec{F} \, dV$$

b. (8 pts) Compute the surface integral over the disk by parametrizing the disk and successively finding:

$$\vec{R}(r,\theta), \quad \vec{e}_r, \quad \vec{e}_\theta, \quad \vec{N}, \quad \vec{F}\left(\vec{R}(r,\theta)\right), \quad \iint_D \vec{F} \cdot d\vec{S}$$

Recall: $\vec{F} = (4xz^3, 4yz^3, z^4)$ and *C* is the cone parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

c. (7 pts) Compute the surface integral over the cone *C* by successively finding: $\vec{e}_r, \vec{e}_\theta, \vec{N}, \vec{F}(\vec{R}(r,\theta)), \iint_C \vec{F} \cdot d\vec{S}$

d. (2 pts) Combine $\iint_{D} \vec{F} \cdot d\vec{S}$ and $\iint_{C} \vec{F} \cdot d\vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d\vec{S}$

15. (10 points) Find the average value of the function $f(x, y, z) = x^2 + y^2 + z^2$ within the solid cylinder $x^2 + y^2 \le 9$ for $0 \le z \le 4$.

16. (10 points) Find the value(s) of *R* so that the ellipsoid $\frac{x^2}{4^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2} = R^2$ is tangent to the plane $\frac{1}{2}x + \frac{4}{3}y + 2z = 36$.

HINT: Their normal vectors must be parallel.

17. (10 points) The equation xy = wz defines a 3-dimensional surface in \mathbb{R}^4 . It may be parametrized by

 $(w, x, y, z) = \vec{R}(u, v, \theta) = (u \cos \theta, u \sin \theta, v \cos \theta, v \sin \theta).$

Consider the portion *S* of this 3-surface inside the 3-sphere $w^2 + x^2 + y^2 + z^2 \le 9$. HINT: What does the 3-sphere equation say about the parameters *u*, *v*, and θ ?

a. Find the 3-volume of the 3-surface *S*.

HINT: Successively find \vec{e}_u , \vec{e}_v , \vec{e}_θ , \vec{N} , $|\vec{N}|$, V. Be very careful with signs.

b. Find the flux of $\vec{F} = (z, x - y, -x, w + z)$ through the 3-surface *S* oriented by your \vec{N} .

HINT: Successively find $\vec{F}(\vec{R}(u,v,\theta))$, $\vec{F} \cdot \vec{N}$, $\iiint \vec{F} \cdot d\vec{V}$.

Recall: The surface is $(w, x, y, z) = \vec{R}(u, v, \theta) = (u \cos \theta, u \sin \theta, v \cos \theta, v \sin \theta)$