Name \qquad Sec \qquad
MATH 251
Final
Spring 2010
Sections 511
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1. Find the angle between the vectors $\vec{u}=(2,2,1)$ and $\vec{v}=(1,2,2)$.
a. $\arccos (8 / 9) \quad$ Correct Choice
b. $\arccos (8 / 3)$
c. $\arccos (\sqrt{8} / 9)$
d. $\arccos (3 / \sqrt{8})$
e. $\arccos (3 / 8)$
$\vec{u} \cdot \vec{v}=2+4+2=8 \quad|\vec{u}|=\sqrt{4+4+1}=3 \quad|\vec{v}|=\sqrt{1+4+4}=3 \quad \cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}=\frac{8}{9}$
2. At the point (x, y, z) where the line $\vec{r}(t)=(1-t, t, 2-2 t)$ intersects the plane $x-2 y+3 z=16$, we have $x+y+z=$
a. -2
b. 2
c. 3
d. 5 Correct Choice
e. 16

Plug the line into the plane and solve for t :
$(1-t)-2(t)+3(2-2 t)=16 \quad-9 t+7=16 \quad t=-1$
Plug back into the line:
$(x, y, z)=(1-t, t, 2-2 t)=(2,-1,4) \quad$ So $\quad x+y+z=5$
3. If a jet flies around the world from West to East, directly above the equator, in what direction does its unit binormal \hat{B} point?
a. Down (toward the center of the earth)
b. Up (away from the center of the earth)
c. North Correct Choice
d. South
e. West
\hat{T} points East, \hat{N} points Down and by the right hand rule \hat{B} points North.
4. Find the z-intercept of the plane tangent to the surface $\frac{x y}{z}=1$ at the point $(2,3,6)$.
a. 6
b. $\frac{1}{6}$
c. 5
d. -5
e. -6 Correct Choice
$F=\frac{x y}{z} \quad \vec{\nabla} F=\left(\frac{y}{z}, \frac{x}{z},-\frac{x y}{z^{2}}\right) \quad \vec{N}=\left.\vec{\nabla} F\right|_{(2,3,6)}=\left(\frac{1}{2}, \frac{1}{3},-\frac{1}{6}\right)$
$\vec{N} \cdot X=\vec{N} \cdot P \quad \frac{1}{2} x+\frac{1}{3} y-\frac{1}{6} z=\frac{1}{2} 2+\frac{1}{3} 3-\frac{1}{6} 6=1 \quad \frac{1}{6} z=\frac{1}{2} x+\frac{1}{3} y-1$
$z=3 x+2 y-6 \quad z$-intercept is $c=-6$.
5. The temperature in an ideal gas is given by $T=\kappa \frac{P}{\rho}$ where κ is a constant, P is the pressure and ρ is the density. At a certain point $Q=(3,2,1)$, we have

$$
\begin{array}{ll}
P(Q)=8 & \vec{\nabla} P(Q)=(4,-2,-4) \\
\rho(Q)=2 & \vec{\nabla} \rho(Q)=(-1,4,2)
\end{array}
$$

So at the point Q, the temperature is $T(Q)=4 \kappa$ and its gradient is $\vec{\nabla} T(Q)=$
a. $\kappa(-8.5,6,9)$
b. $\kappa(4,-9,-6) \quad$ Correct Choice
c. $\kappa(3,2,-2)$
d. $\kappa\left(\frac{1}{2}, 2\right)$
e. $\kappa\left(-\frac{1}{2}, 2\right)$

By chain rule: (Think about each component separately.)

$$
\begin{gathered}
\vec{\nabla} T=\frac{\partial T}{\partial P} \vec{\nabla} P+\frac{\partial T}{\partial \rho} \vec{\nabla} \rho=\frac{\kappa}{\rho} \vec{\nabla} P-\frac{\kappa P}{\rho^{2}} \vec{\nabla} \rho=\frac{\kappa}{2}(4,-2,-4)-\frac{\kappa 8}{2^{2}}(-1,4,2) \\
\quad=\kappa(2,-1,-2)+\kappa(2,-8,-4)=\kappa(4,-9,-6)
\end{gathered}
$$

6. If the temperature in a room is $T=x y z^{2}$, find the rate of change of the temperature as seen by a fly who is located at $(3,2,1)$ and has velocity $(1,2,3)$.
a. 32
b. 36
c. 44

Correct Choice
d. 48
e. 52
$\frac{d T}{d t}=\left.\vec{v} \cdot \vec{\nabla} T\right|_{(3,2,1)}=\left.(1,2,3) \cdot\left(y z^{2}, x z^{2}, 2 x y z\right)\right|_{(3,2,1)}=(1,2,3) \cdot(2,3,12)=44$
7. Find the volume below $z=x y$ above the region between the curves $y=3 x$ and $y=x^{2}$.
a. $\frac{81}{2}$
b. $\frac{81}{4}$
c. $\frac{81}{8}$
d. $\frac{243}{2}$
e. $\frac{243}{8}$ Correct Choice
$3 x=x^{2} \quad \Rightarrow \quad x=0,3$
$V=\int_{0}^{3} \int_{x^{2}}^{3 x} x y d y d x=\int_{0}^{3}\left[\frac{x y^{2}}{2}\right]_{y=x^{2}}^{3 x} d x=\int_{0}^{3}\left(\frac{x 9 x^{2}}{2}-\frac{x x^{4}}{2}\right) d x=\left[\frac{9 x^{4}}{8}-\frac{x^{6}}{12}\right]_{x=0}^{3}=\frac{3^{6}}{4}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{243}{8}$
8. Compute $\iint_{C} e^{-x^{2}-y^{2}} d x d y$ over the disk enclosed in the circle $x^{2}+y^{2}=4$.
a. $\quad \frac{\pi}{2}\left(1-e^{-4}\right)$
b. $\pi\left(1-e^{-4}\right) \quad$ Correct Choice
c. $\frac{\pi}{2} e^{-4}$
d. πe^{-4}
e. $2 \pi e^{-4}$
$\iint e^{-x^{2}-y^{2}} d x d y=\int_{0}^{2 \pi} \int_{0}^{2} e^{-r^{2}} r d r d \theta=2 \pi\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{2}=\pi\left(1-e^{-4}\right)$
9. Find the mass of 2 loops of the helical ramp parametrized by

$$
\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 4 \theta) \text { for } r \leq 3
$$

if the density is $\rho=\sqrt{x^{2}+y^{2}}$.
a. 40π
b. 120π
c. 200π

d. $\frac{500}{3} \pi$
e. $\frac{244}{3} \pi \quad$ Correct Choice
$\left.\begin{aligned} & \\ & \vec{e}_{r}\left.=\left\lvert\, \begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ (\cos \theta, & \sin \theta, & 0\end{array}\right.\right) \\ & \vec{e}_{\theta}=\left.\begin{array}{rl}\vec{N} & =\vec{e}_{r} \times \vec{e}_{\theta}=\hat{\imath}(4 \sin \theta)-\hat{\jmath}(4 \cos \theta)+\hat{k}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) \\ (-r \sin \theta, & r \cos \theta\end{array}\right) \\ &=(4)\end{aligned} \right\rvert\, \begin{aligned} & \\ &|\vec{N}|=\sqrt{16 \sin ^{2} \theta+16 \cos ^{2} \theta+1}=\sqrt{16+r^{2}} \quad \rho=r\end{aligned}$
$A=\iint \rho d S=\iint \rho|\vec{N}| d r d \theta=\int_{0}^{4 \pi} \int_{0}^{3} r \sqrt{16+r^{2}} d r d \theta=\left.\frac{4 \pi}{3}\left(16+r^{2}\right)^{3 / 2}\right|_{0} ^{3}=\frac{4 \pi}{3}(125-64)=\frac{244}{3} \pi$
10. Find the flux of $\vec{F}=(y,-x, 2)$ through the helical ramp of problem 9 oriented up.
a. 4π
b. $\frac{8}{3} \pi$
c. 216π
d. 108π Correct Choice
e. $\frac{1024}{3} \pi$
$\vec{F}=(y,-x, 1)=(r \sin \theta,-r \cos \theta, 2) \quad \vec{F} \cdot \vec{N}=4 r \sin ^{2} \theta+4 r \cos ^{2} \theta+2 r=6 r$
$\iint \vec{F} \cdot d \vec{S}=\iint \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{4 \pi} \int_{0}^{3} 6 r d r d \theta=4 \pi\left[3 r^{2}\right]_{0}^{3}=108 \pi$
11. Compute $\int_{(2,1)}^{(3,2)} \vec{F} \cdot d \vec{s}$ for $\vec{F}=\left(2 x y, x^{2}\right)$ along the curve $\vec{r}(t)=\left(\left(2+t^{2}\right) e^{\sin \pi t},\left(1+t^{2}\right) e^{\sin 2 \pi t}\right)$. HINT: Find a scalar potential.
a. $\quad 12$
b. $\quad 14$

Correct Choice
c. 22
d. $\sqrt{2}$
e. $15-4 \sqrt{2}$
$\vec{F}=\left(2 x y, x^{2}\right)=\vec{\nabla} f$ for $f=x^{2} y \quad \int_{(2,1)}^{(3,2)} \vec{F} \cdot d \vec{s}=\int_{(2,1)}^{(3,2)} \vec{\nabla} f \cdot d \vec{s}=f(3,2)-f(2,1)=3^{2} 2-2^{2} 1=14$
12. Compute $\oint(2 x \sin y-5 y) d x+\left(x^{2} \cos y-4 x\right) d y$ counterclockwise around the cross shown.

HINT: Use Green's Theorem.
a. -45
b. -10
c. 5 Correct Choice

d. 10
e. 45

Green's Theorem says $\oint_{\partial R} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$
Here $P=2 x \sin y-5 y$ and $Q=x^{2} \cos y-4 x$.
So $\partial_{x} Q-\partial_{y} P=(2 x \cos y-4)-(2 x \cos y-5)=1$.
So $\iint_{R}\left(\partial_{x} Q-\partial_{y} P\right) d x d y=\iint_{R} 1 d x d y=$ area $=5$
13. Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ for $\vec{F}=(-y z, x z, x y z)$
over the quartic surface $z=\left(x^{2}+y^{2}\right)^{2}$ for $z \leq 16$ oriented down and out. The surface may be parametrized by

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{4}\right)
$$

HINT: Use Stokes' Theorem.
a. $-128 \pi \quad$ Correct Choice
b. -64π
c. -32π

y
d. 32π
e. 64π

Stokes' Theorem says $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial R} \vec{F} \cdot d \vec{s}$.
The boundary is the circle $x^{2}+y^{2}=4$ with $z=16$ which may be parametrized by
$\vec{r}(\theta)=(2 \cos \theta, 2 \sin \theta, 16)$. The velocity is $\vec{v}=(-2 \sin \theta, 2 \cos \theta, 0)$.
Since the surface is oriented down and out, the circle must be traversed clockwise.
So reverse the velocity: $\vec{v}=(2 \sin \theta,-2 \cos \theta, 0)$.
$\vec{F}=(-y z, x z, x y z) \quad \vec{F}(\vec{r}(\theta))=(-32 \sin \theta, 32 \sin \theta, 64 \cos \theta \sin \theta)$
$\vec{F} \cdot \vec{v}=-64 \sin ^{2} \theta-64 \cos ^{2} \theta=-64$
$\oint_{\partial R} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=-\int_{0}^{2 \pi} 64 d \theta=-128 \pi$
14. (21 points) Verify Gauss' Theorem $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right)$ and the solid V above the cone C given by $z=\sqrt{x^{2}+y^{2}}$ or parametrized by $R(r, \theta)=(r \cos \theta, r \sin \theta, r)$, below the disk D given by $x^{2}+y^{2} \leq 9$ and $z=3$.

Be sure to check and explain the orientations.
Use the following steps:
a. (4 pts) Compute the volume integral by successively finding:

$$
\vec{\nabla} \cdot \vec{F}, \quad d V, \quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V
$$

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{F}=4 z^{3}+4 z^{3}+4 z^{3}=12 z^{3} \quad d V=r d r d \theta d z \\
& \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\int_{0}^{2 \pi} \int_{0}^{3} \int_{r}^{3} 12 z^{3} r d z d r d \theta=2 \pi \int_{0}^{3}\left[3 z^{4}\right]_{z=r}^{3} r d r=2 \pi \int_{0}^{3}\left(3^{5}-3 r^{4}\right) r d r \\
& \quad=2 \pi\left[3^{5} \frac{r^{2}}{2}-3 \frac{r^{6}}{6}\right]_{r=0}^{3}=2 \pi\left(\frac{3^{7}}{2}-\frac{3^{6}}{2}\right)=\pi 3^{6}(3-1)=1458 \pi
\end{aligned}
$$

b. (8 pts) Compute the surface integral over the disk by parametrizing the disk and successively finding:

$$
\vec{R}(r, \theta), \quad \vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{F}(\vec{R}(r, \theta)), \quad \iint_{D} \vec{F} \cdot d \vec{S}
$$

$\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 3)$

$$
\vec{N}=\vec{e}_{r} \times \vec{e}_{\theta}=\hat{\imath}(0)-\hat{\jmath}(0)+\hat{k}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)=(0,0, r)
$$

We need \vec{N} to point up which it does.
$\vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right) \quad \vec{F}(\vec{R}(r, \theta))=(4 r \cos \theta 27,4 r \sin \theta 27,81)$
$\iint_{D} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{3} 81 r d r d \theta=2 \pi\left[81 \frac{r^{2}}{2}\right]_{0}^{3}=729 \pi$

Recall: $\quad \vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right)$ and C is the cone parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.
c. (7 pts) Compute the surface integral over the cone C by successively finding:

$$
\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{F}(\vec{R}(r, \theta)), \quad \iint_{C} \vec{F} \cdot d \vec{S}
$$

$\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$

$$
\begin{array}{r|}
\vec{e}_{r}
\end{array}=\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\vec{e}_{\theta} & = & (\cos \theta, \\
(-r \sin \theta, & r \sin \theta, & 1) \\
r \cos \theta, & 0)
\end{array}
$$

$\vec{N}=\vec{e}_{r} \times \vec{e}_{\theta}=\hat{\imath}(-r \cos \theta)-\hat{\jmath}(r \sin \theta)+\hat{k}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)=(-r \cos \theta,-r \sin \theta, r)$
We need \vec{N} to point down (out of the volume). Reverse $\vec{N}=(r \cos \theta, r \sin \theta,-r)$ $\vec{F}=\left(4 x z^{3}, 4 y z^{3}, z^{4}\right) \quad \vec{F}(\vec{R}(r, \theta))=\left(4 r \cos \theta r^{3}, 4 r \sin \theta r^{3}, r^{4}\right)$
$\vec{F} \cdot \vec{N}=4 r^{5} \cos ^{2} \theta+4 r^{5} \sin ^{2} \theta-r^{5}=3 r^{5}$
$\iint_{P} \vec{F} \cdot d \vec{S}=\iint_{P} \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{3} 3 r^{5} d r d \theta=2 \pi\left[3 \frac{r^{6}}{6}\right]_{0}^{3}=2 \pi\left(\frac{3^{6}}{2}\right)=729 \pi$
d. (2 pts) Combine $\iint_{D} \vec{F} \cdot d \vec{S}$ and $\iint_{C} \vec{F} \cdot d \vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d \vec{S}$
$\iint_{\partial V} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot d \vec{S}+\iint_{C} \vec{F} \cdot d \vec{S}=729 \pi+729 \pi=1458 \pi$
which agrees with part (a).
15. (10 points) Find the average value of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ within the solid cylinder $x^{2}+y^{2} \leq 9$ for $0 \leq z \leq 4$

$$
\begin{aligned}
& f_{\text {ave }}=\frac{\iiint f d V}{\iiint 1 d V} \quad \iiint_{0} 1 d V=\int_{0}^{4} \int_{0}^{2 \pi} \int_{0}^{3} r d r d \theta d z=36 \pi=\pi R^{2} H \\
& \begin{aligned}
& \iint f d V=\int_{0}^{4} \int_{0}^{2 \pi} \int_{0}^{3}\left(r^{2}+z^{2}\right) r d r d \theta d z=2 \pi \int_{0}^{4}\left[\frac{r^{4}}{4}+z^{2} \frac{r^{2}}{2}\right]_{r=0}^{3} d z=2 \pi \int_{0}^{4}\left(\frac{81}{4}+\frac{9}{2} z^{2}\right) d z \\
& \quad=2 \pi\left[\frac{81}{4} z+\frac{9}{2} \frac{z^{3}}{3}\right]_{z=0}^{4}=2 \pi(81+96)=354 \pi
\end{aligned} \\
& f_{\text {ave }}=\frac{354 \pi}{36 \pi}=\frac{59}{6}
\end{aligned}
$$

16. (10 points) Find the value(s) of R so that the ellipsoid $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=R^{2}$ is tangent to the plane $\frac{1}{2} x+\frac{4}{3} y+2 z=36$.

HINT: Their normal vectors must be parallel.
Let $f=\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}$ and $g=\frac{1}{2} x+\frac{4}{3} y+2 z$.
$\vec{\nabla} f=\left(\frac{2 x}{4^{2}}, \frac{2 y}{3^{2}}, \frac{2 z}{2^{2}}\right) \quad \vec{\nabla} g=\left(\frac{1}{2}, \frac{4}{3}, 2\right) \quad \vec{\nabla} f=\lambda \vec{\nabla} g$
$\frac{2 x}{4^{2}}=\lambda \frac{1}{2} \quad \frac{2 y}{3^{2}}=\lambda \frac{4}{3} \quad \frac{2 z}{2^{2}}=\lambda 2$
$x=4 \lambda \quad y=6 \lambda \quad z=4 \lambda$
$36=\frac{1}{2} x+\frac{4}{3} y+2 z=\frac{1}{2} \cdot 4 \lambda+\frac{4}{3} \cdot 6 \lambda+2 \cdot 4 \lambda=18 \lambda \quad \Rightarrow \quad \lambda=2$
$x=8 \quad y=12 \quad z=8$
$R^{2}=\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=\frac{8^{2}}{4^{2}}+\frac{12^{2}}{3^{2}}+\frac{8^{2}}{2^{2}}=4+16+16=36 \Rightarrow R=6$

