Name		
MATH 251	Paper Homework 2	Spring 2010
Sections 200,511		P. Yasskin

Consider the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$. Compute each of the following. Show your work. Simplify where possible.

- 1. velocity $\vec{v}(t) =$
- **2**. acceleration $\vec{a}(t) =$
- 3. jerk

 $\vec{j}(t) =$

- 4. speed (HINT: The quantity in the square root is a perfect square.) $|\vec{v}(t)| =$
- 5. arclength between (1,0,1) and $\left(e,\sqrt{2},\frac{1}{e}\right)$ L =
- 6. unit tangent vector $\hat{T} =$
- **7**. $\vec{v} \times \vec{a}$ $\vec{v} \times \vec{a} =$
- 8. $|\vec{v} \times \vec{a}|$ $|\vec{v} \times \vec{a}| =$
- **9**. unit binormal vector $\vec{B} =$

10. unit normal vector $\vec{N} =$

11. curvature

κ =

12. torsion

 $\tau =$

13. tangential acceleration (compute in 2 ways) $a_T =$

 $a_T =$

14. normal acceleration (compute in 2 ways) $a_N =$

 $a_N =$

- **15**. mass of a wire between (1,0,1) and $\left(e,\sqrt{2},\frac{1}{e}\right)$ with linear density $\rho = x z$ M =
- **16**. work to move a bead along the wire from (1,0,1) to $\left(e,\sqrt{2},\frac{1}{e}\right)$ with the force $\vec{F} = (z,y,x)$ $\vec{F}(\vec{r}(t)) =$

W =