Consider the curve \(\vec{r}(t) = \left(e^t, \sqrt{2} t, e^{-t} \right) \). Compute each of the following. Show your work. Simplify where possible.

1. velocity
 \(\vec{v}(t) = \)

2. acceleration
 \(\vec{a}(t) = \)

3. jerk
 \(\vec{j}(t) = \)

4. speed (HINT: The quantity in the square root is a perfect square.)
 \(|\vec{v}(t)| = \)

5. arclength between \((1, 0, 1) \) and \((e, \sqrt{2}, \frac{1}{e}) \)
 \(L = \)

6. unit tangent vector
 \(\vec{T} = \)

7. \(\vec{v} \times \vec{a} \)
 \(\vec{v} \times \vec{a} = \)

8. \(|\vec{v} \times \vec{a}| \)
 \(|\vec{v} \times \vec{a}| = \)

9. unit binormal vector
 \(\vec{B} = \)
10. unit normal vector
\[\vec{N} = \]

11. curvature
\[\kappa = \]

12. torsion
\[\tau = \]

13. tangential acceleration (compute in 2 ways)
\[a_T = \]

\[a_T = \]

14. normal acceleration (compute in 2 ways)
\[a_N = \]

\[a_N = \]

15. mass of a wire between \((1, 0, 1)\) and \((e, \sqrt{2}, \frac{1}{e})\) with linear density \(\rho = x - z\)
\[M = \]

16. work to move a bead along the wire from \((1, 0, 1)\) to \((e, \sqrt{2}, \frac{1}{e})\) with the force \(\vec{F} = (z, y, x)\)
\[\vec{F}(r(t)) = \]

\[W = \]