Name		Sec				
			1-12	/60	15	/11
MATH 251	Exam 1	Spring 2011	13	/11	16	/12
Section 500		P. Yasskin		,		
Multiple Choice: (5 points each. No part credit.)			14	/11	Total	/105

- **1**. Consider the line $X = P + t\vec{v}$ where P = (2,3,2) and $\vec{v} = (2,-1,2)$. Drop a perpendicular from the point Q = (-1,0,5) to a point *R* on the line. Then R = HINT: Draw a figure.
 - **a**. $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ **b**. $\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}\right)$
 - **c.** $\left(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$
 - **d**. (4,2,4)
 - **e**. $\left(\frac{8}{3}, \frac{10}{3}, \frac{8}{3}\right)$
- **2.** If \vec{u} is 5 cm long and points 30° WEST of NORTH and \vec{v} is 4 cm long and points 30° EAST of NORTH, then $\vec{u} \times \vec{v}$ is
 - **a**. 10 cm long and points DOWN.
 - **b**. 10 cm long and points UP.
 - **c**. 10 cm long and points SOUTH.
 - **d**. $10\sqrt{3}$ cm long and points DOWN.
 - e. $10\sqrt{3}$ cm long and points SOUTH.
- **3**. Find the point where the line (x, y, z) = (3 2t, 2 t, 1 + t) intersects the plane x + y + 3z = 2. At this point, x + y + z =
 - **a**. 2
 - **b**. 4
 - **c**. 6
 - **d**. 8
 - e. The line does not intersect the plane.

4. The graph of the equation $x^2 + 4x - y^2 + 4y + z^2 + 2z = -1$ is a

- **a**. hyperboloid of one sheet
- b. hyperboloid of two sheets
- c. cone
- d. hyperbolic paraboloid
- e. hyperbolic cylinder

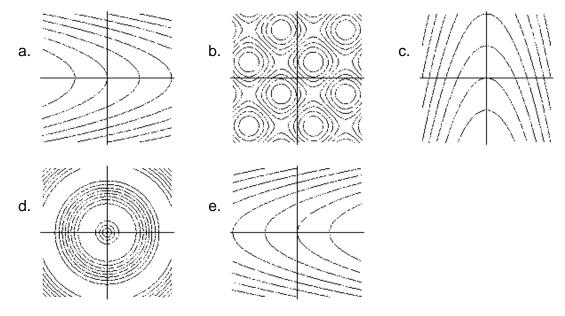
- **5**. For the helix $\vec{r}(t) = (3t, \sin(4t), \cos(4t))$, which of the following is FALSE?
 - **a**. $\vec{v} = (3, 4\cos(4t), -4\sin(4t))$
 - **b**. $\vec{a} = (0, -16\sin(4t), -16\cos(4t))$
 - **c**. $\vec{j} = (0, -64\cos(4t), 64\sin(4t))$
 - **d**. speed = 25
 - e. arclength between (0,0,1) and $(3\pi,0,1)$ is 5π

6. For the helix $\vec{r}(t) = (3t, \sin(4t), \cos(4t))$, which of the following is FALSE?

a.
$$\hat{T} = \left(\frac{3}{5}, \frac{4}{5}\cos(4t), -\frac{4}{5}\sin(4t)\right)$$

b. $\hat{N} = (0, -\sin(4t), -\cos(4t))$
c. $\hat{B} = \left(-\frac{4}{5}, -\frac{3}{5}\cos(4t), -\frac{3}{5}\sin(4t)\right)$
d. $a_T = 0$
e. $a_N = 16$

7. Which of the following is the contour plot of $f(x, y) = y^2 + x + 1$?



8. If P(2,3) = 5 and $\frac{\partial P}{\partial x}(2,3) = 0.4$ and $\frac{\partial P}{\partial y}(2,3) = -0.3$, estimate P(2.1,2.8). a. 4.9

- **b**. 4.98
- **c**. 4.99
- **d**. 5.01
- **e**. 5.1

9. Currently for a certain box, the length L is 5 cm and increasing at 0.2 cm/sec, the width W is 4 cm and decreasing at 0.3 cm/sec, the height H is 3 cm and increasing at 0.1 cm/sec. Then currently, the volume V is

- **a**. increasing at 0.1 cm/sec.
- **b**. decreasing at 0.1 cm/sec.
- c. increasing at 0.2 cm/sec.
- **d**. decreasing at 0.2 cm/sec.
- e. increasing at 0.3 cm/sec.

- **10**. The temperature of a frying pan is $T = \frac{1}{1 + x^2 + 4y^2}$. An ant is located at (2,1). In what **unit vector** direction should the ant move to **decrease** the temperature as fast as possible?
 - **a**. (-1,-2)
 - **b**. (1,2)
 - **c**. (1,-2)
 - **d.** $\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$ **e.** $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
- **11**. The temperature of a frying pan is $T = \frac{1}{1 + x^2 + 4y^2}$. An ant is located at (2,1) and has velocity $\vec{v} = (0.3, -0.6)$. What is the rate of change of the temperature as seen by the ant?
 - **a**. -.0444
 - **b**. -0.2
 - **c**. 0.2
 - **d**. 0.3333
 - e. 0.0444

12. The point (2,1,-1) is on the graph of $x^2yz^2 + xy^3z = 2$. Compute $\frac{\partial z}{\partial y}\Big|_{(2,1)}$.

a. $-\frac{2}{3}$ **b.** $-\frac{1}{3}$ **c.** $\frac{1}{3}$ **d.** $\frac{2}{3}$ **e.** $\frac{4}{3}$ Work Out: (Points indicated. Part credit possible. Show all work.)

13. (11 points) Find the mass of the helical wire $\vec{r}(t) = (3t, \sin(4t), \cos(4t))$ from (0, 0, 1) to $(3\pi, 0, 1)$ if its linear density is $\rho = x^2 + y^2 + z^2$.

14. (11 points) A bead slides along the helix $\vec{r}(t) = (3t, \sin(4t), \cos(4t))$ from (0, 0, 1) to $(3\pi, 0, 1)$ under the action of the force $\vec{F} = (x, xy, xz)$. Find the work done.

15. (11 points) Find the plane tangent to the graph of the function $z = x^2y + y^3x$ at the point (x, y) = (2, 1). Find the *z*-intercept.

16. (12 points) Find the plane tangent to the level surface $x \sin z + y \cos z = 3$ at the point $(x, y, z) = (3, 2, \frac{\pi}{2})$. Find the *z*-intercept.