Sec_____

MATH 251

Final Exam

Spring 2011

Section 200/511

P. Yasskin

Multiple Choice: (4 points each. No part credit.)

1-12	/48	14	/16
13	/16	15	/25
		Total	/105

- **1**. Find the projection of the vector $\vec{u} = (12, -3, 4)$ along the vector $\vec{v} = (2, 1, -2)$.
 - **a.** $\left(\frac{-12}{13}, \frac{3}{13}, \frac{-4}{13}\right)$
 - **b.** $\left(\frac{12}{13}, \frac{-3}{13}, \frac{4}{13}\right)$
 - **c**. $\left(\frac{-26}{9}, \frac{-13}{9}, \frac{26}{9}\right)$
 - **d**. $\left(\frac{26}{9}, \frac{13}{9}, \frac{-26}{9}\right)$
 - **e**. $\left(\frac{108}{13}, \frac{-9}{13}, \frac{36}{13}\right)$
- **2.** If $|\vec{u}| = 4$ and $|\vec{v}| = 3$ and the angle between \vec{u} and \vec{v} is $\theta = \frac{\pi}{3}$ then $|\vec{u} \times \vec{v}| = 1$
 - **a**. $6\sqrt{3}$
 - **b**. 6
 - **c**. $3\sqrt{3}$
 - **d**. 3
 - **e**. $12\sqrt{3}$
- 3. Find the point where the line through the origin perpendicular to the plane 3x 3y + 4z = 17intersects that plane. At this point x + y + z =
 - **a**. 2
 - **b**. 3
 - **c**. 5
 - **d**. 17
 - **e**. $\frac{1}{2}$

- **4.** Find the arc length of the curve $\vec{r}(t) = (t^2, 2t, \ln t)$ between (1, 2, 0) and $(e^2, 2e, 1)$.
 - **a**. e^2
 - **b**. $e^2 + 1$
 - **c**. $e^2 1$
 - **d**. $\frac{2}{3}e^3 + e$
 - **e**. $\frac{2}{3}e^3 + e \frac{5}{3}$
- **5**. The pressure, P, density, ρ , and temperature, T, of a certain ideal gas are related by $P=3\rho T$. At the point (1,2,3), the density and its gradient are $\rho=4$ and $\vec{\nabla}\rho=(0.2,0.4,0.1)$, while the temperature and its gradient are T=300 and $\vec{\nabla}T=(2,1,3)$. Hence the pressure is $P=3\cdot 4\cdot 300=3600$ and its gradient is $\vec{\nabla}P=$
 - **a**. (1802.4, 2704.8, 2701.2)
 - **b**. (600.8,901.900.4)
 - **c**. (68, 132, 42)
 - **d**. (204, 372, 126)
 - **e**. (1.2, 1.2, 0.9)
- **6.** Find the equation of the plane tangent to the graph of $x^2yz^2 2y^2z^3 = 10$ at the point (3,2,1). The *z*-intercept is
 - **a**. $\frac{6}{25}$
 - **b**. 5
 - **c**. $\frac{25}{6}$
 - **d**. 60
 - **e**. $\frac{5}{3}$

- 7. Han Deut is flying the Millennium Eagle through a dangerous zenithon field whose density is $\rho = xyz$. If his current position is (x,y,z) = (1,-1,2), in what **unit** vector direction should he travel to **decrease** the density as fast as possible?
 - **a**. (2,-2,1)
 - **b**. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$
 - **c**. (-2,2,-1)
 - **d**. $\left(\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$
 - **e**. $\left(\frac{-2}{3}, \frac{-2}{3}, \frac{-1}{3}\right)$
- **8**. Compute $\iint e^{-x^2-y^2} dA$ over the quarter circle $x^2 + y^2 \le 9$ in the first quadrant.
 - **a**. $\frac{\pi}{2}e^{-9}$
 - **b**. $\frac{\pi}{2}(e^{-9}-1)$
 - **c**. $-\frac{\pi}{4}e^{-9}$
 - **d**. $\frac{\pi}{4}(1-e^{-9})$
 - **e**. $\pi(1 e^{-9})$
- **9.** Compute $\int_0^8 \int_{x^{1/3}}^2 \cos(y^4) \, dy \, dx$

HINT: Reverse the order of integration.

- **a**. $\frac{1}{4}\sin(4) \frac{1}{4}$
- **b**. $\frac{1}{4}\sin(64) \frac{1}{4}$
- **c**. $\frac{1}{4}\sin(64)$
- **d**. $\frac{1}{4}\sin(16) \frac{1}{4}$
- **e**. $\frac{1}{4}\sin(16)$

10. Compute $\iiint z dV$ over the solid sphere $x^2 + y^2 + (z - 1)^2 \le 1$

given in spherical coordinates by $\rho = 2\cos\varphi$.

HINT: The whole sphere has $z \ge 0$. What does this say about φ ?

- **b**. $\frac{4\pi}{3}$ **c**. $\frac{4\pi}{6}$ **d**. $\frac{\pi}{3}$ **e**. $\frac{\pi}{12}$

11. Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x, 2y, 2z)$ along the curve $\vec{r}(t) = \left(\frac{2}{t}, \frac{4}{t}, \frac{6}{t}\right)$ from (2,4,6) to (1,2,3).

HINT: Find a scalar potential.

- **a**. −70
- **b**. -42
- **c**. 0
- **d**. 42
- **e**. 70
- **12**. Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (\sec(x^3) 5y, \cos(y^5) + 3x)$ counterclockwise around the triangle with vertices (0,0), (8,0) and (0,4).

Hint: Use Green's Theorem.

- **a**. 12
- **b**. 16
- **c**. 32
- **d**. 64
- **e**. 128

Work Out: (Points indicated. Part credit possible. Show all work.)

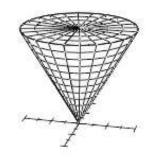
13. (16 points) Use Lagrange multipliers to find 4 numbers, a, b, c, and d, whose product is $\frac{2}{3}$ and for which a + 2b + 3c + 4d is a minimum.

14. (16 points) Find the mass and the *y*-component of the center of mass of the quarter of the cylinder $x^2 + y^2 \le 4$ with $0 \le z \le 3$ in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ if the mass density is $\delta = xyz$.

(25 points) Verify Gauss' Theorem $\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (2xy^2, 2yx^2, z(x^2 + y^2))$ and the solid

above the cone $z = 2\sqrt{x^2 + y^2}$ below the plane z = 2. Be careful with orientations. Use the following steps:



First the Left Hand Side:

a. Compute the divergence:

$$\vec{\nabla} \cdot \vec{F} =$$

b. Express the divergence and the volume element in the appropriate coordinate system:

$$\overrightarrow{\nabla} \cdot \overrightarrow{F} = dV =$$

- c. Find the limits of integration:
- d. Compute the left hand side:

$$\iiint\limits_{V} \overrightarrow{\nabla} \boldsymbol{\cdot} \overrightarrow{F} \, dV =$$

Second the Right Hand Side:

The boundary surface consists of a cone C and a disk D with appropriate orientations.

e. Complete the parametrization of the cone *C*:

$$\vec{R}(r,\theta) = \left(r\cos\theta, r\sin\theta, \underline{\hspace{1cm}}\right)$$

f. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

g. Compute the normal vector:

$$\vec{N} =$$

h. Evaluate $\vec{F} = (2xy^2, 2yx^2, z(x^2 + y^2))$ on the cone:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

i. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

j. Compute the flux through C:

$$\iint_{C} \vec{F} \cdot d\vec{S} =$$

k. Complete the parametrization of the disk D:

$$\vec{R}(r,\theta) = \left(r\cos\theta, r\sin\theta,\right)$$

I. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

m. Compute the normal vector:

$$\vec{N} =$$

n. Evaluate $\vec{F} = (2xy^2, 2yx^2, z(x^2 + y^2))$ on the disk:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

o. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

p. Compute the flux through D:

$$\iint_{D} \vec{F} \cdot d\vec{S} =$$

q. Compute the right hand side:

$$\iint_{\partial V} \vec{F} \cdot d\vec{S} =$$