
MATH 251 Honors Projects  P. Yasskin 2010

1. Minimal Rectangles and Triangles

a. Consider a rectangle of length L and width W. Draw a line parallel to each side
at distances x and y from one corner, as shown in the diagram:

x L

W

A1 A2

A3 A4

This divides the rectangle into 4 subrectangles. Find the values of x and y
which maximize and minimize the sum of the squares of the areas:

f = (A1 )2 + (A2 )2 + (A3 )2 + (A4 )2

b. Consider a triangle with vertices at A = (0, 0), B = (b, 0) and C = (a, c) where a,
b and c are fixed. Pick point D a fraction r of the way from A to B, point E a
fraction s of the way from B to C, and point F a fraction t of the way from C to A
and connect D, E and F, as shown in the diagram:

A=(0,0) B=(b,0)

C=(a,c)

D

E

F

r

s

t

This divides the triangle into 4 subtriangles. Find the values of r, s and t which
maximize and minimize the sum of the squares of the areas:

f = (A1 )2 + (A2 )2 + (A3 )2 + (A4 )2

c. In both problems, be sure to identify the configuration space and check both
the interior and boundary of the configuration space for the absolute maximum
and minimum.



2. Skimpy Donut

You are the mathematics consultant for a donut company which makes donuts which
have a thin layer of chocolate icing covering the entire donut. One day you decide to
point out that the company might cut costs on chocolate icing if they keep the volume
(and hence weight) of the donut fixed but adjust the shape of the donut to minimize the
surface area. Alternatively, they could advertise extra icing by maximizing the surface
area. You need to write a report presenting your ideas which can be read by both the
company president and the technical engineers.
A donut has the shape of a torus which is specified by giving a big radius a from the
center of the hole to the center of the ring and a small radius b which is the radius of the
ring, as shown in the figure.

Your job is to determine the values of a and b which extremize the surface area while
keeping the volume fixed at the volume of the typical donut mentioned above. This
original donut has a = 5 cm and b = 3 cm.
a. The surface of a torus satisfies the equation

(r − a)2 + z2 = b2

in cylindrical coordinates where, of course, b ≤ a.
i. Compute the volume V of the torus as a function of a and b.

HINT: Integrate in cylindrical coordinates.
ii. Check that the volume of the original donut is

V = 90π2 cm3 ≈ 888 cm3.
b. The surface of the torus can also be parametrized as

R⃗(θ,ϕ) = ((a + b cosϕ) cosθ, (a + b cosϕ) sinθ, b sinϕ)
for 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ 2π. Here, θ represents the angle around the circle of
radius a and ϕ represents the angle around the circle of radius b.
i. Compute the surface area S of the torus as a function of a and b.

HINT: Do a surface integral in θ and ϕ.
ii. Check that the surface area of the original donut is

S = 60π2 cm2 ≈ 592 cm2.
c. Keep the volume fixed at V = 90π2 cm3and find the values of a, b and S which

minimize and maximize the surface area S. (Apply the second derivative test to
any critical point in the interior and check the values at the endpoints.)

d. Write a letter to the CEO of the donut company summarizing your results
(including minimum and maximum dimensions, a description of these donuts
and the percent savings or extra cost). Anything you say in this report must be
documented in an appendix of Maple computations for the engineers.



3. The Hypervolume of a Hypersphere

In this project, you will determine the hypervolume enclosed by a hypersphere in ℝn

whose equation is:

x1
2 + x2

2 + ⋯ + xn−1
2 + xn

2 = R2

a. Compute the area enclosed by the circle x2 + y2 = R2 using a double integral in
polar coordinates. Repeat using a double integral in rectangular coordinates
with x as the inner integral and y as the outer integral.
Let V2(R) denote this function, where V2 means 2-dimensional volume (area).

b. Compute the volume enclosed by the sphere x2 + y2 + z2 = R2 using a triple
integral in spherical coordinates. Repeat using a triple integral in rectangular
coordinates with x as the inner integral, y as the middle integral and z as the
outer integral.
Let V3(R) denote this function, where V3 means 3-dimensional volume.
Explain (geometrically and algebraically) why the inner 2 integrals are just
V2 R2 − z2 . (Think about volume by slicing.)

c. Compute the 4-dimensional hypervolume enclosed by the hypersphere
x2 + y2 + z2 + w2 = R2 using a quadruple integral in rectangular coordinates with
x as the inner integral, y and z as the middle integrals and w as the outer
integral.
Let V4(R) denote this function, where V4 means 4-dimensional hypervolume.
Explain (geometrically and algebraically) why the inner 3 integrals are just
V3 R2 − w2 .

d. For n = 5, 6,⋯, 10, find the n-dimensional hypervolume enclosed by the
n-dimensional hypersphere x1

2 + x2
2 + ⋯ + xn−1

2 + xn
2 = R2.

Let Vn(R) denote this function, where Vn means n-dimensional hypervolume.
HINT: If you write this volume as an n-fold integral in rectangular coordinates
with xn as the outer integral then the inner n − 1 integrals are Vn−1 R2 − xn

2 .
Explain this in terms of volume by slicing.

e. Looking at your results for the hypervolumes of the n-dimensional
hyperspheres, deduce two general patterns for Vn(R). (The formulas for n even
and for n odd are different.) Explain how you got your formulas. Does your
“odd” formula hold for the case n = 1 that is, for the length of the interval
[−R, R]?

f. Use mathematical induction to prove your two formulas for Vn(R). (Use the hint
from part (d) twice.) This may be hard; so get help from your instructor.



4. Average Temperatures

A 6 inch burner on an electric stove occupies the circle x2 + y2 = 9 with z = 0 and is kept
at the constant temperature of 120°C. A frying pan, a skillet and a pot of water are placed
on this burner. You are to find their average temperatures (exactly if possible and
approximately to 5 decimals otherwise). Their geometries and their temperatures are
given below.

a. The 8 inch frying pan occupies the circle

x2 + y2 = 16 with z = 0. The temperature in

polar coordinates is T = 120 − 3|r − 3|.
The frying pan and the burner are shown here:

b. The 8 inch "square" skillet occupies the region

inside x4 + y4 = 256. Verify this is the polar

curve r = 4
4 cos4(θ) + sin4(θ)

The temperature

is T = 120 − 3|r − 3|. (You may need to split

the integral for r < 3 and r > 3.

c. The water in the 8 inch pot which is 4 inches

deep occupies the region given in cylindrical

coordinates by 4 175 − 4 256 − r4 ≤ z ≤ 4 175

and has temperature T = 120 − 3 (r − 3)2 + z2 .

d. A temperature probe is placed in the pot of

water of part (c) and measures the average

temperature along a spiral curve parametrized

by r⃗(t) = (t cos(tπ), t sin(tπ), 2) for

0 ≤ t ≤ 4. The temperature is given in

cylindrical coordinates by

T = 120 − 3 (r − 3)2 + z2 .

(What is the percent error between the temperature measured by the probe
and the actual average temperature of thewater from part (c).)



e. The pot from part (c) occupies the surface

given by z = 4 175 − 4 256 − r4 for r ≤ 4 in

cylindrical coordinates and may be

parametrized by R⃗(r,θ)

= rcos(θ), r sin(θ), 4 175 − 4 256 − r4

for r ≤ 4 and 0 ≤ θ ≤ 2π. The temperature

is given in cylindrical coordinates by

T = 120 − 3 (r − 3)2 + z2 .

5. The Volume Between a Surface and Its Tangent Plane

In this project, you will be finding the tangent plane to a surface for which the volume
between the surface and the tangent plane is a minimum.
a. Consider the surface

z = f(x, y) = 4x2 + y2 + x2y2

Verify that the surface is everywhere concave up on the square 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1.
Note: A function fx, y is everywhere concave up on a region if
D = fxxfyy − fxy

2 > 0 and fxx > 0 everywhere on the region. It is everywhere
concave down on a region if D = fxxfyy − fxy

2 > 0 and fxx < 0 everywhere on the
region.

b. Find its tangent plane at a general point a, b, f(a, b) .

c. Compute the volume between the surface and its general tangent plane above
the square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Call this volume V(a, b).

d. Find the point (a, b) for which the volume V(a, b) is a minimum. Be sure to apply
the second derivative test to verify that your critical point is a minimum.

e. Repeat steps (a)-(d) for two or three other functions f(x, y). Use interesting
functions, not just polynomials with at least one concave up and one concave
down. Check the concavity.

f. What do you conjecture?
g. Prove your conjecture by repeating steps (a)-(d) for an undefined function

f(x, y).
h. What happens to your conjecture if you change the square base to another

region R? Try some shapes other than a rectangle or a circle!



6. Gauss’ Law and Ampere’s Law

In this project you will calculate the electric charge inside a sphere for several electric
fields using both the differential and integral versions of Gauss’ Law and discuss their
equivalence. Then you will calculate the electric current through a disk for several
magnetic fields using both the differential and integral versions of Ampere’s Law and
discuss their equivalence.

Gauss’ Law:

● The differential form of Gauss’ Law gives the charge density as ρ = 1
4π

∇⃗ ⋅ E⃗ from

which the charge inside a sphere is Q = ∫∫∫
V

ρdV where V is the interior of the

sphere.
● The integral form of Gauss’ Law gives the charge inside a sphere as

Q = 1
4π ∫∫

S

E⃗ ⋅ dS where S is the surface of the sphere.

a. Explain why Gauss’ Theorem says the two charge formulas are the same.
b. Use both versions to compute the charge inside the sphere x2 + y2 + z2 = a2 for

each of the electric fields:
E⃗n = crnr⃗ = c x2 + y2 + z2

n
x, c x2 + y2 + z2

n
y, c x2 + y2 + z2

n
z for

n = 1, 0, −1, −2, −3.
Here, r is the length of the position vector r⃗ = (x, y, z). Use spherical coordinates
to do the volume intehral and parametrize the surface of the sphere as
R⃗(θ,ϕ) = (a sin(ϕ) cos(θ), a sin(ϕ) sin(θ), a cos(ϕ)).

c. For which electric field(s) is the charge density a constant? How could this
constant be calculated from the charge and volume?

d. For which electric field(s) do the differential and integral forms give different
answers? Why does this not violate Gauss’ Theorem? In this case, the
physicists regard the integral form of Gauss’ Law as giving the correct answer
and interpret the net charge Q as a point charge at the origin. Explain why this
interpretation is reasonable by looking at the charge density at points other
than the origin.

Ampere’s Law:

● The differential form of Ampere’s Law gives the current density as J⃗ = 1
4π

∇⃗ × B⃗

from which the current through a disk is I = ∫∫
D

J⃗ ⋅ dS⃗ where D is the surface of the

disk.
● The integral form of Ampere’s Law gives the current through a disk as

I = 1
4π ∮

C

B⃗ ⋅ ds⃗ where C is the circle bounding the disk.

a. Explain why Stokes’ Theorem says the two current formulas are the same.
b. Use both versions to compute the current through the disk x2 + y2 = a2 for each

of the electric fields:
B⃗n = 2c(r )nr⃗ = −2c x2 + y2

n
y, 2c x2 + y2

n
x, 0 for n = 1, 0, −1, −2, −3.

Here r⃗ = (x, y, 0) is the vector from the z-axis to the point and r is its length.
Use polar coordinates with z = 0 to do the surface intehral and parametrize the
circle for the line integral.

c. For which magnetic field(s) is the current density a constant? How could this



constant be calculated from the current and area?
d. For which magnetic field(s) do the differential and integral forms give different

answers? Why does this not violate Stokes’ Theorem? In this case, the
physicists regard the integral form of Ampere’s Law as giving the correct
answer and interpret the net current I as a current moving along the z-axis.
Explain why this interpretation is reasonable by looking at the current density at
points not on the z-axis.

7. Locating an Apartment

Upon moving to a new city, you want to find an apartment which is conveniently located
relative to your school, your place of work and the shopping mall. These are located at
S = (−2, −2) W = (4, 1) M = (1, 5) respectively. If your apartment is at A = (x, y) find

the location of your apartment which minimizes f = AS + AW + AM . Here AS is

the distance from your apartment to school (i.e. the length of the vector AS) and similarly

for AW and AM . In the course of solving this problem, you should answer the

following questions:

a. Compute the gradient of AS and express your answer in terms of the vector

AS. In particular, how are their directions related, how are their magnitudes
related?

b. Draw a contour plot of AS . What does it say about the direction and

magnitude of the gradient AS ?

c. Find the point A which minimizes f.

d. Plot the three vectors AS, AW and AM together with the triangle SWM.

e. Looking at your plot, give a geometric condition on the three vectors AS, AW

and AM which characterizes the point A which minimizes f which you feel would
be true even if S, W or M were moved. Verify it for the given values.

f. What happens if the point M is moved to the right so that the angle ∠SWM is
greater than 135°? Move M until you find the critical angle. Draw a series of
plots or animate your plots.

g. Prove the geometric condition you found in part (e) for general position of S, W
and M . It may be useful to use your results from part (a).



8. Interpretation of the Divergence and Curl

The usual formulas for the divergence and curl are derivative formulas. However there
are also integral formulas for each of them which provide a more intuitive understanding
of their meaning.

Divergence:
● The derivative definition of the divergence of a vector field F⃗ = (F1, F2, F3 ) is

∇⃗ ⋅ F⃗ = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
.

● The integral definition of the divergence of a vector field F⃗ = (F1, F2, F3 ) is

div F⃗ (P) = lim
R0

3
4πR3 ∫∫

SR(P)

F⃗ ⋅ dS⃗

where div F⃗ (P) denotes the value of the divergence at a point P = (a, b, c) and
SR(P) is the sphere of radius R centered at P which may be parametrized by

R⃗(θ,ϕ) = (a + R sin(ϕ) cos(θ), b + R sin(ϕ) sin(θ), c + R cos(ϕ)).
● Interpretation: If F⃗ is the velocity field of a fluid, then the flux ∫∫ F⃗ ⋅ dS⃗ represents

the amount of fluid flowing out of the sphere per unit time. Since V = 4πR3

3
is the

volume of the sphere, 1
V ∫∫ F⃗ ⋅ dS⃗ represents the amount of fluid flowing out of the

sphere per unit time, per unit volume. In the limit as R  0, the div F⃗ (P)
measures amount of fluid flowing out of the point P.

● Notation: Use ∇⃗ ⋅ F⃗ to denote the derivative definition and div F⃗ to denote the
integral definition.

● With this notation, Gauss’ Theorem says

∫∫∫
V

∇⃗ ⋅ F⃗ dV = ∫∫
∂V

F⃗ ⋅ dS⃗

a. Use Gauss’ Theorem to prove div F⃗ (P) = ∇⃗ ⋅ F⃗ (P). You may assume that

∇⃗ ⋅ F⃗ is continuous, so that its value inside a small sphere may be
approximated by its value at the center of the sphere.

b. For each of the following vector fields, calculate both the derivative and integral
definitions of the divergence at a point P = (a, b, c).
i. F⃗ = (x3, y3, z3 )
ii. G⃗ = (−yz, xz, z2 )
iii. u⃗ = (xy, yz, zx)
iv. v⃗ =(yz, −xz, xy)

Curl:


