Name ID			1-12	/60
MATH 251	Exam 1	Fall 2012	13	/10
Sections 515		P. Yasskin	14	/10
Multiple Choice: (5 points each. No part credit.)			15	/10
			16	/10
			Total	/100

1. Find the area of the triangle whose vertices are

P = (2,4,-3), Q = (3,4,-2) and R = (0,6,-3).

- **a**. 1
- **b**. $\sqrt{3}$
- **c**. $2\sqrt{3}$
- **d**. 6
- **e**. 12

- **2**. Which of the following is the plane which passes through the point (4,2,1) and is perpendicular to the line (x, y, z) = (1 + 2t, 2 + t, 3 + 3t)?
 - **a.** 2x y + 3z = 13
 - **b**. 2x y + 3z = 9
 - **c**. 2x + y + 3z = 13
 - **d**. 2x + y + 3z = 9
 - **e**. -2x + y 3z = -9

- **3**. The quadratic surface $x^2 + y^2 z^2 + 4x + 4y 6z = 0$ is
 - a. an elliptic hyperboloid
 - **b**. a hyperbolic paraboloid
 - **c**. a hyperboloid of 1 sheet
 - d. a hyperboloid of 2 sheets
 - e. a cone.

- 4. The plot at the right is the graph of which equation?
 - a. $z = -x^2 + y^2$ b. $z = x^2 - y^2$ c. $z^2 = x^2 - y^2$ d. $z^2 = -x^2 + y^2$
 - **e.** $z^2 x^2 y^2 = 1$

- 5. An airplane is travelling due South with constant speed and constant altitude as it flies over College Station. Since its path is part of a circle around the earth, its acceleration points directly toward the center of the earth. In which direction does it binormal \hat{B} point?
 - **a**. Up
 - **b**. North
 - c. East
 - d. South
 - e. West

6. For the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ which of the following is FALSE?

a. $\vec{v} = \langle -4\sin t, 3, 4\cos t \rangle$ **b.** $\vec{a} = \langle -4\cos t, 0, -4\sin t \rangle$ **c.** $|\vec{v}| = 25$ **d.** Arc length between t = 0 and $t = 2\pi$ is 10π **e.** $a_T = 0$

- 7. A wire in the shape of the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ has linear mass density $\rho = y + z$. Find its total mass between t = 0 and $t = 2\pi$.
 - **a**. 6π
 - **b**. 12π
 - **c**. 30π
 - **d**. $6\pi^2$
 - **e**. $30\pi^2$

- 8. Find the work done to move an object along the curve $\vec{r}(t) = (4\cos t, 3t, 4\sin t)$ between t = 0 and $t = 2\pi$ by the force $\vec{F} = \langle z, 0, -x \rangle$?
 - **a**. −32*π*
 - **b**. -25π
 - **c**. $-25\pi^2$
 - **d**. 25π
 - **e**. 32π

- **9**. Find the plane tangent to the graph of $z = xe^y$ at the point (2,0). Its *z*-intercept is
 - **a**. e
 - **b**. 2
 - **c**. 0
 - **d**. -2
 - **e**. −*e*

10. Find the plane tangent to the graph of $xz^3 + zy^2 + yx^4 = 42$ at the point (1,2,0). Its *z*-intercept is

- **a**. 10
- **b**. $\frac{5}{4}$

- **c**. $\frac{5}{2}$ **d**. $\frac{2}{5}$
- **e**. $\frac{4}{5}$

11. Hans Duo is currently at (x, y, z) = (3, 2, 1) and flying the Milenium Eagle through a deadly polaron field whose density is $\rho = x^2z + yz^2$. In what unit vector direction should he travel to <u>reduce</u> the density as fast as possible?

- **b**. $\frac{1}{\sqrt{206}}\langle -6, 1, -13 \rangle$
- **c**. $\langle -6, -1, -13 \rangle$
- **d**. $\frac{1}{\sqrt{206}}\langle -6, -1, -13 \rangle$
- $e. \quad \frac{1}{\sqrt{206}} \langle 6, -1, 13 \rangle$

- **12**. The point (x,y) = (9,3) is a critical point of the function $f(x,y) = x^2 2xy^2 + 4y^3$. Use the Second Derivative Test to classify this critical point.
 - a. local minimum
 - b. local maximum
 - c. saddle point
 - d. TEST FAILS

13. Find the scalar and vector projections of the vector $\vec{a} = \langle 1, 2, -2 \rangle$ along the vector $\vec{b} = \langle 2, -1, 2 \rangle$.

14. The pressure, *P*, volume, *V*, and temperature, *T*, of an ideal gas are related by $P = \frac{kT}{V}$ for some constant *k*. For a certain sample $k = 10 \frac{\text{cm}^3 - \text{atm}}{^\circ \text{K}}$. At a certain instant, the volume and temperature are $V = 2000 \text{ cm}^3$, and $T = 300 ^\circ \text{K}$, and are increasing at $\frac{dV}{dt} = 40 \frac{\text{cm}^3}{\text{sec}}$, and $\frac{dT}{dt} = 5 \frac{^\circ \text{K}}{\text{sec}}$. At that instant, what is the pressure, is it increasing or decreasing and at what rate? **15**. If two resistors, with resistances R_1 and R_2 , are arranged in parallel, the total resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

If $R_1 = 4\Omega$ and $R_2 = 6\Omega$ and the uncertainty in the measurement of R_1 is $\Delta R_1 = 0.03\Omega$ and for R_2 is $\Delta R_2 = 0.02\Omega$. Find R and use differentials to estimate the uncertainty in the measurment of R.

16. Find the point(s) on the surface $z^2 = 46 - 2x - 4y$ which are closest to the origin. HINT: Explain why you can minimize the square of the distance instead of the distance. Use the Second Derivative Test to check it is a local minimum.