\qquad

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 10$
14	$/ 10$
15	$/ 10$
16	$/ 10$
Total	$/ 100$

1. Find the line through $P=(1,2,3)$ which is perpendicular to both of the vectors $\vec{a}=\langle 3,-1,2\rangle$ and $\vec{b}=\langle 1,0,-2\rangle$.
a. $(x, y, z)=(2+t, 8+2 t, 1+3 t)$
b. $(x, y, z)=(2+t,-8+2 t, 1+3 t)$
c. $(x, y, z)=(2-t,-8-2 t, 1-3 t)$
d. $(x, y, z)=(1+2 t, 2-8 t, 3+t)$
e. $(x, y, z)=(1+2 t, 2+8 t, 3+t)$
2. A triangle has vertices at $A=\langle 1,1,1\rangle, \quad B=\langle 3,4,-3\rangle$ and $C=\langle 3,3,2\rangle$. Drop a perpendicular from B to the side $\overline{A C}$.
Find the point P where the perpendicular intersects the side $\overline{A C}$.
a. $\left\langle\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right\rangle$
b. $\left\langle\frac{4}{3}, \frac{4}{3}, \frac{2}{3}\right\rangle$
c. $\left\langle\frac{5}{3}, \frac{5}{3}, \frac{4}{3}\right\rangle$
d. $\left\langle\frac{41}{29}, \frac{47}{29}, \frac{5}{29}\right\rangle$
e. $\left\langle\frac{12}{29}, \frac{18}{29}, \frac{-24}{29}\right\rangle$
3. If \vec{u} points NorthEast and \vec{v} points Down, then $\vec{u} \times \vec{v}$ points
a. NorthEast
b. NorthWest
c. SouthEast
d. SouthWest
e. Up
4. Identify the quadratic surface for the equation

$$
2(x-2)^{2}+(y-3)^{2}+(z-2)^{2}=(x-2)^{2}+2(y-3)^{2}+(z+2)^{2}
$$

a. hyperboloid of 1 sheet
b. hyperboloid of 2 sheets
c. cone
d. hyperbolic paraboloid
e. hyperbolic cylinder
5. A girl scout is hiking up a mountain whose attitude is given by $z=h(x, y)=10-x-x^{2}-y^{2}$. If she is currently at the point $(x, y)=(1,2)$, in what unit vector direction should she walk to go up hill as fast as possible?
a. $\left(-\frac{3}{5},-\frac{4}{5}\right)$
b. $\left(\frac{3}{5}, \frac{4}{5}\right)$
c. $\left(-\frac{4}{5},-\frac{3}{5}\right)$
d. $\left(\frac{4}{5}, \frac{3}{5}\right)$
e. $(4,3)$
6. Find the arclength of 4 revolutions around the helix $\vec{r}(t)=(2 \cos 2 t, \quad 2 \sin 2 t, \quad 3 t)$. NOTE: Each revolution covers an angle of 2π. How much does t change?
a. 2π
b. 4π
c. 5π
d. 15π
e. 20π
7. A wire in the shape of the helix $\vec{r}(t)=(2 \cos 2 t, \quad 2 \sin 2 t, \quad 3 t)$ has linear mass density $\rho=z^{2}$. Find its total mass between $t=0$ and $t=2 \pi$.
a. $M=24 \pi^{3}$
b. $M=36 \pi^{2}$
c. $M=120 \pi^{3}$
d. $M=180 \pi^{2}$
e. $M=240 \pi^{2}$
8. Find the work done to move an object along the helix $\vec{r}(t)=(2 \cos 2 t, \quad 2 \sin 2 t, \quad 3 t)$ between $t=0$ and $t=2 \pi$ by the force $\vec{F}=\left\langle\begin{array}{lll}-y z, x z, \quad z\rangle \text {. }\end{array}\right.$
a. $\frac{33}{2} \pi$
b. 33π
c. $\frac{33}{2} \pi^{2}$
d. $33 \pi^{2}$
e. $66 \pi^{2}$
9. Find the tangent line to the helix $\vec{r}(t)=(2 \cos 2 t, \quad 2 \sin 2 t, \quad 3 t)$ at the point $t=\frac{\pi}{2}$. Where does it intersect the $x y$-plane?
HINT : What are the position and tangent vector at $t=\frac{\pi}{2}$?
a. $(x, y)=(-1, \pi)$
b. $(x, y)=(-1,-\pi)$
c. $(x, y)=(-2,2 \pi)$
d. $(x, y)=(-2,-2 \pi)$
e. $(x, y)=(2, \pi)$
10. Find the plane tangent to the graph of $z=y \ln x$ at the point $(e, 2)$. Its z-intercept is
a. $-e$
b. -2
c. 0
d. 2
e. e
11. Find the plane tangent to the graph of $x^{2} z^{2}+2 z y^{2}+y x^{3}=71$ at the point $(2,1,0)$. Its z-intercept is
a. 2
b. 4
c. 8
d. 16
e. 32
12. The point $(x, y)=\left(1, \frac{1}{2}\right)$ is a critical point of the function $f(x, y)=4 x y-x^{3} y-4 x y^{3}$. Use the Second Derivative Test to classify this critical point.
a. local minimum
b. local maximum
c. saddle point
d. TEST FAILS
13. Find the point where the line $(x, y, z)=(4+3 t, 3-2 t, 2+t)$ intersects the plane $x+2 y+3 z=20$, or explain why they are parallel.
14. Find the line where the planes $-2 x-6 y+4 z=7$ and $3 x+9 y-6 z=5$ intersect, or explain why they are parallel.
15. If two adjustable resistors, with resistances R_{1} and R_{2}, are arranged in parallel, the total resistance R is given by

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Currently, $R_{1}=3 \Omega$ and $R_{2}=7 \Omega$ and they are changing according to $\frac{d R_{1}}{d t}=-0.1$
$\frac{\Omega}{\sec }$ and $\frac{d R_{2}}{d t}=0.2 \frac{\Omega}{\sec }$. Find R and $\frac{d R}{d t}$. Is R increasing or decreasing?
16. A rectangular box sits on the $x y$-plane with its top 4 vertices in the paraboloid $z=8-2 x^{2}-8 y^{2}$. Find the dimensions and volume of the largest such box.

