Name	ID	1-12	/60
MATH 25	Exam 1 Version A Spring 2013	13	/10
Sections	i06 P. Yasskin	14	/10
Multiple Choice: (5 points each. No part credit.)		15	/10
		16	/10
		Total	/100

- **1.** Find the line through P = (1,2,3) which is perpendicular to both of the vectors $\vec{a} = \langle 3,-1,2 \rangle$ and $\vec{b} = \langle 1,0,-2 \rangle$.
 - **a**. (x, y, z) = (2 + t, 8 + 2t, 1 + 3t)
 - **b**. (x, y, z) = (2 + t, -8 + 2t, 1 + 3t)
 - **c**. (x, y, z) = (2 t, -8 2t, 1 3t)
 - **d**. (x, y, z) = (1 + 2t, 2 8t, 3 + t)
 - **e**. (x, y, z) = (1 + 2t, 2 + 8t, 3 + t)

- **2**. A triangle has vertices at $A = \langle 1, 1, 1 \rangle$, $B = \langle 3, 4, -3 \rangle$ and $C = \langle 3, 3, 2 \rangle$. Drop a perpendicular from *B* to the side \overline{AC} . Find the point *P* where the perpendicular intersects the side \overline{AC} .
 - **a.** $\left\langle \frac{7}{3}, \frac{7}{3}, \frac{5}{3} \right\rangle$ **b.** $\left\langle \frac{4}{3}, \frac{4}{3}, \frac{2}{3} \right\rangle$ **c.** $\left\langle \frac{5}{3}, \frac{5}{3}, \frac{4}{3} \right\rangle$ **d.** $\left\langle \frac{41}{29}, \frac{47}{29}, \frac{5}{29} \right\rangle$
 - **e**. $\left< \frac{12}{29}, \frac{18}{29}, \frac{-24}{29} \right>$

- **3**. If \vec{u} points NorthEast and \vec{v} points Down, then $\vec{u} \times \vec{v}$ points
 - a. NorthEast
 - **b**. NorthWest
 - c. SouthEast
 - d. SouthWest
 - **e**. Up
- 4. Identify the quadratic surface for the equation $2(x-2)^{2} + (y-3)^{2} + (z-2)^{2} = (x-2)^{2} + 2(y-3)^{2} + (z+2)^{2}$
 - a. hyperboloid of 1 sheet
 - b. hyperboloid of 2 sheets
 - c. cone
 - d. hyperbolic paraboloid
 - e. hyperbolic cylinder

- **5**. A girl scout is hiking up a mountain whose attitude is given by $z = h(x, y) = 10 x x^2 y^2$. If she is currently at the point (x, y) = (1, 2), in what unit vector direction should she walk to go up hill as fast as possible?
 - **a.** $\left(-\frac{3}{5}, -\frac{4}{5}\right)$ **b.** $\left(\frac{3}{5}, \frac{4}{5}\right)$ **c.** $\left(-\frac{4}{5}, -\frac{3}{5}\right)$ **d.** $\left(\frac{4}{5}, \frac{3}{5}\right)$

- **6**. Find the arclength of 4 revolutions around the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$. NOTE: Each revolution covers an angle of 2π . How much does *t* change?
 - **a**. 2π
 - **b**. 4π
 - **c**. 5π
 - **d**. 15π
 - **e**. 20π

- 7. A wire in the shape of the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ has linear mass density $\rho = z^2$. Find its total mass between t = 0 and $t = 2\pi$.
 - **a**. $M = 24\pi^3$
 - **b**. $M = 36\pi^2$
 - **c**. $M = 120\pi^3$
 - **d**. $M = 180\pi^2$
 - **e**. $M = 240\pi^2$

- 8. Find the work done to move an object along the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ between t = 0 and $t = 2\pi$ by the force $\vec{F} = \langle -yz, xz, z \rangle$.
 - **a**. $\frac{33}{2}\pi$
 - **b**. 33π
 - **c**. $\frac{33}{2}\pi^2$
 - **d**. $33\pi^2$
 - **e**. $66\pi^2$

- **9**. Find the tangent line to the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ at the point $t = \frac{\pi}{2}$. Where does it intersect the *xy*-plane? HINT : What are the position and tangent vector at $t = \frac{\pi}{2}$?
 - **a**. $(x, y) = (-1, \pi)$
 - **b**. $(x, y) = (-1, -\pi)$
 - **c**. $(x, y) = (-2, 2\pi)$
 - **d**. $(x, y) = (-2, -2\pi)$
 - **e**. $(x, y) = (2, \pi)$

10. Find the plane tangent to the graph of $z = y \ln x$ at the point (e, 2). Its *z*-intercept is

- **a**. –*e*
- **b**. -2
- **c**. 0
- **d**. 2
- **e**. *e*

11. Find the plane tangent to the graph of $x^2z^2 + 2zy^2 + yx^3 = 71$ at the point (2,1,0). Its *z*-intercept is

- **a**. 2
- **b**. 4
- **c**. 8
- **d**. 16
- **e**. 32

12. The point $(x,y) = (1,\frac{1}{2})$ is a critical point of the function $f(x,y) = 4xy - x^3y - 4xy^3$. Use the Second Derivative Test to classify this critical point.

- a. local minimum
- b. local maximum
- c. saddle point
- d. TEST FAILS

13. Find the point where the line (x, y, z) = (4 + 3t, 3 - 2t, 2 + t) intersects the plane x + 2y + 3z = 20, or explain why they are parallel.

14. Find the line where the planes -2x - 6y + 4z = 7 and 3x + 9y - 6z = 5 intersect, or explain why they are parallel.

15. If two adjustable resistors, with resistances R_1 and R_2 , are arranged in parallel, the total resistance *R* is given by

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

Currently, $R_1 = 3\Omega$ and $R_2 = 7\Omega$ and they are changing according to $\frac{dR_1}{dt} = -0.1$ $\frac{\Omega}{\text{sec}}$ and $\frac{dR_2}{dt} = 0.2 \frac{\Omega}{\text{sec}}$. Find *R* and $\frac{dR}{dt}$. Is *R* increasing or decreasing?

16. A rectangular box sits on the *xy*-plane with its top 4 vertices in the paraboloid $z = 8 - 2x^2 - 8y^2$. Find the dimensions and volume of the largest such box.