Name_

MATH 251

Exam 1 Version B

Spring 2013

Sections 506

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

/60
/10
/10
/10
/10
/100

1. Find the line through P = (1,2,3) which is perpendicular to both of the vectors $\vec{a} = \langle 3, -1, 2 \rangle$ and $\vec{b} = \langle 1, 0, -2 \rangle$.

a.
$$(x, y, z) = (1 + 2t, 2 + 8t, 3 + t)$$

b.
$$(x, y, z) = (1 + 2t, 2 - 8t, 3 + t)$$

c.
$$(x,y,z) = (2-t,-8-2t,1-3t)$$

d.
$$(x, y, z) = (2 + t, -8 + 2t, 1 + 3t)$$

e.
$$(x,y,z) = (2+t,8+2t,1+3t)$$

2. A triangle has vertices at $A = \langle 1, 1, 1 \rangle$, $B = \langle 3, 4, -3 \rangle$ and $C = \langle 3, 3, 2 \rangle$. Drop a perpendicular from B to the side \overline{AC} . Find the point P where the perpendicular intersects the side \overline{AC} .

a.
$$\left\langle \frac{12}{29}, \frac{18}{29}, \frac{-24}{29} \right\rangle$$

b.
$$\left\langle \frac{41}{29}, \frac{47}{29}, \frac{5}{29} \right\rangle$$

c.
$$\left\langle \frac{5}{3}, \frac{5}{3}, \frac{4}{3} \right\rangle$$

d.
$$\left\langle \frac{4}{3}, \frac{4}{3}, \frac{2}{3} \right\rangle$$

e.
$$\left\langle \frac{7}{3}, \frac{7}{3}, \frac{5}{3} \right\rangle$$

- 3. If \vec{u} points NorthEast and \vec{v} points Down, then $\vec{u} \times \vec{v}$ points
 - a. SouthWest
 - **b**. SouthEast
 - c. NorthWest
 - d. NorthEast
 - e. Up
- 4. Identify the quadratic surface for the equation

$$2(x-2)^2 + (y-3)^2 + (z-2)^2 = (x-2)^2 + 2(y-3)^2 + (z+2)^2$$

- a. hyperboloid of 1 sheet
- b. hyperboloid of 2 sheets
- c. cone
- d. hyperbolic paraboloid
- e. hyperbolic cylinder

- **5**. A girl scout is hiking up a mountain whose attitude is given by $z = h(x,y) = 10 x x^2 y^2$. If she is currently at the point (x,y) = (1,2), in what unit vector direction should she walk to go up hill as fast as possible?
 - **a**. (4,3)
 - **b**. $\left(\frac{4}{5}, \frac{3}{5}\right)$
 - **c**. $\left(-\frac{3}{5}, -\frac{4}{5}\right)$
 - **d**. $\left(-\frac{4}{5}, -\frac{3}{5}\right)$
 - **e**. $\left(\frac{3}{5}, \frac{4}{5}\right)$

- **6**. Find the arclength of 4 revolutions around the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$. NOTE: Each revolution covers an angle of 2π . How much does t change?
 - **a**. 20π
 - **b**. 15π
 - **c**. 5π
 - **d**. 4π
 - **e**. 2π

- 7. A wire in the shape of the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ has linear mass density $\rho = z^2$. Find its total mass between t = 0 and $t = 2\pi$.
 - **a**. $M = 24\pi^3$
 - **b**. $M = 120\pi^3$
 - **c**. $M = 36\pi^2$
 - **d**. $M = 180\pi^2$
 - **e**. $M = 240\pi^2$

- 8. Find the work done to move an object along the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ between t = 0 and $t = 2\pi$ by the force $\vec{F} = \langle -yz, xz, z \rangle$.
 - **a**. $\frac{33}{2}\pi$
 - **b**. 33π
 - **c**. $\frac{33}{2}\pi^2$
 - **d**. $33\pi^2$
 - **e**. $66\pi^2$

9. Find the tangent line to the helix $\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t)$ at the point $t = \frac{\pi}{2}$.

Where does it intersect the xy-plane?

HINT: What are the position and tangent vector at $t = \frac{\pi}{2}$?

- **a**. $(x,y) = (-2,-2\pi)$
- **b**. $(x,y) = (-2,2\pi)$
- **c**. $(x,y) = (-1,-\pi)$
- **d**. $(x,y) = (-1,\pi)$
- **e**. $(x,y) = (2,\pi)$

- **10**. Find the plane tangent to the graph of $z = y \ln x$ at the point (e,2). Its z-intercept is
 - **a**. *e*
 - **b**. 2
 - **c**. 0
 - **d**. -2
 - **e**. -*e*

- **11**. Find the plane tangent to the graph of $x^2z^2 + 2zy^2 + yx^3 = 71$ at the point (2,1,0). Its *z*-intercept is
 - **a**. 32
 - **b**. 16
 - **c**. 8
 - **d**. 4
 - **e**. 2

- **12**. The point $(x,y) = \left(1, \frac{1}{2}\right)$ is a critical point of the function $f(x,y) = 4xy x^3y 4xy^3$. Use the Second Derivative Test to classify this critical point.
 - a. local maximum
 - b. local minimum
 - c. saddle point
 - d. TEST FAILS

Work Out: (10 points each. Part credit possible. Show all work.)

13. Find the line where the planes -2x - 6y + 4z = 7 and 3x + 9y - 6z = 5 intersect, or explain why they are parallel.

14. Find the point where the line (x, y, z) = (4 + 3t, 3 - 2t, 2 + t) intersects the plane x + 2y + 3z = 20, or explain why they are parallel.

15. A rectangular box sits on the xy-plane with its top 4 vertices in the paraboloid $z = 8 - 2x^2 - 8y^2$. Find the dimensions and volume of the largest such box.

16. If two adjustable resistors, with resistances R_1 and R_2 , are arranged in parallel, the total resistance R is given by

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

Currently, $R_1=3\Omega$ and $R_2=7\Omega$ and they are changing according to $\frac{dR_1}{dt}=-0.1$ $\frac{\Omega}{\sec}$ and $\frac{dR_2}{dt}=0.2\,\frac{\Omega}{\sec}$. Find R and $\frac{dR}{dt}$. Is R increasing or decreasing?