MATH 251 Exam 1 Version B Spring 2013
Sections 506 Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1. Find the line through \(P = (1, 2, 3) \) which is perpendicular to both of the vectors \(\vec{a} = \langle 3, -1, 2 \rangle \) and \(\vec{b} = \langle 1, 0, -2 \rangle \).

 a. \((x, y, z) = (1 + 2t, 2 + 8t, 3 + t) \) Correct Choice
 b. \((x, y, z) = (1 + 2t, 2 - 8t, 3 + t) \)
 c. \((x, y, z) = (2 - t, -8 - 2t, 1 - 3t) \)
 d. \((x, y, z) = (2 + t, -8 + 2t, 1 + 3t) \)
 e. \((x, y, z) = (2 + t, 8 + 2t, 1 + 3t) \)

 SOLUTION: \(\vec{v} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 0 & -2 \end{vmatrix} = \langle 2, 8, 1 \rangle \) \(X = P + \vec{v} \) \((x, y, z) = (1 + 2t, 2 + 8t, 3 + t) \)

2. A triangle has vertices at \(A = \langle 1, 1, 1 \rangle \), \(B = \langle 3, 4, -3 \rangle \) and \(C = \langle 3, 3, 2 \rangle \). Drop a perpendicular from \(B \) to the side \(\overline{AC} \). Find the point \(P \) where the perpendicular intersects the side \(\overline{AC} \).

 a. \(\langle \frac{12}{29}, \frac{18}{29}, \frac{-24}{29} \rangle \)
 b. \(\langle \frac{41}{29}, \frac{47}{29}, \frac{5}{29} \rangle \)
 c. \(\langle \frac{5}{3}, \frac{5}{3}, \frac{4}{3} \rangle \)
 d. \(\langle \frac{4}{3}, \frac{4}{3}, \frac{2}{3} \rangle \)
 e. \(\langle \frac{7}{3}, \frac{7}{3}, \frac{5}{3} \rangle \) Correct Choice

 SOLUTION: \(\overrightarrow{AB} = B - A = \langle 2, 3, -4 \rangle \) \(\overrightarrow{AC} = C - A = \langle 2, 2, 1 \rangle \)
 \(\text{proj}_{\overrightarrow{AC}} \overrightarrow{AB} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AC}^2} \overrightarrow{AC} = \frac{4 + 6 - 4}{4 + 4 + 1} \langle 2, 2, 1 \rangle = \frac{2}{9} \langle 2, 2, 1 \rangle = \langle \frac{4}{3}, \frac{4}{3}, \frac{2}{3} \rangle \)
 \(P = A + \text{proj}_{\overrightarrow{AC}} \overrightarrow{AB} = \langle 1, 1, 1 \rangle + \langle \frac{4}{3}, \frac{4}{3}, \frac{2}{3} \rangle = \langle \frac{7}{3}, \frac{7}{3}, \frac{5}{3} \rangle \)
3. If \(\vec{u} \) points NorthEast and \(\vec{v} \) points Down, then \(\vec{u} \times \vec{v} \) points

a. SouthWest
b. SouthEast
c. NorthWest Correct Choice
d. NorthEast
e. Up

SOLUTION: Fingers of right hand point NorthEast with palm Down. The thumb points NorthWest.

4. Identify the quadratic surface for the equation

\[2(x - 2)^2 + (y - 3)^2 + (z - 2)^2 = (x - 2)^2 + 2(y - 3)^2 + (z + 2)^2 \]

a. hyperboloid of 1 sheet
b. hyperboloid of 2 sheets
c. cone
d. hyperbolic paraboloid Correct Choice
e. hyperbolic cylinder

SOLUTION: Subtract the right side from the left side, expand the \(z \) terms and then solve for \(z \):

\[(x - 2)^2 - (y - 3)^2 + (z - 2)^2 - (z + 2)^2 = 0 \]

\[(x - 2)^2 - (y - 3)^2 - 4z = 0 \]

\[z = \frac{(x - 2)^2}{4} - \frac{(y - 3)^2}{4} \]

5. A girl scout is hiking up a mountain whose attitude is given by \(z = h(x, y) = 10 - x - x^2 - y^2 \). If she is currently at the point \((x, y) = (1, 2)\), in what unit vector direction should she walk to go up hill as fast as possible?

a. \((4, 3)\)
b. \((\frac{4}{5}, \frac{3}{5})\)
c. \((\frac{-3}{5}, \frac{-4}{5})\) Correct Choice
d. \((\frac{-4}{5}, \frac{-3}{5})\)
e. \((\frac{3}{5}, \frac{4}{5})\)

SOLUTION: \(\vec{v}h = (-1 - 2x, -2y) \)

\[\vec{v} = \vec{v}h \bigg|_{(1,2)} = (-1 - 2, -4) = (-3, -4) \]

\[|\vec{v}| = \sqrt{9 + 16} = 5 \]

\[\hat{v} = \left(-\frac{3}{5}, -\frac{4}{5} \right) \]
6. Find the arclength of 4 revolutions around the helix \(\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t) \).

NOTE: Each revolution covers an angle of 2\(\pi \). How much does \(t \) change?

a. 20\(\pi \) Correct Choice
b. 15\(\pi \)
c. 5\(\pi \)
d. 4\(\pi \)
e. 2\(\pi \)

SOLUTION:

\[\vec{v} = \langle -4\sin 2t, 4\cos 2t, 3 \rangle \]

\[|\vec{v}| = \sqrt{16\sin^2 2t + 16\cos^2 2t + 9} = 5 \]

We cover 1 revolution as \(t \) runs from 0 to \(\pi \).

\[L = \int ds = \int |\vec{v}| \, dt = \int_0^{4\pi} 5 \, dt = [5t]_0^{4\pi} = 20\pi \]

7. A wire in the shape of the helix \(\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t) \) has linear mass density \(\rho = z^2 \). Find its total mass between \(t = 0 \) and \(t = 2\pi \).

a. \(M = 24\pi^3 \)
b. \(M = 120\pi^3 \) Correct Choice
c. \(M = 36\pi^2 \)
d. \(M = 180\pi^2 \)
e. \(M = 240\pi^2 \)

SOLUTION:

\[\rho = z^2 = 9t^2 \]

\[|\vec{v}| = 5 \]

\[M = \int \rho \, ds = \int z^2 |\vec{v}| \, dt = \int_0^{2\pi} 9t^2 5 \, dt = \left[\frac{45t^3}{3} \right]_0^{2\pi} = 15 \cdot 8\pi^3 = 120\pi^3 \]

8. Find the work done to move an object along the helix \(\vec{r}(t) = (2\cos 2t, 2\sin 2t, 3t) \) between \(t = 0 \) and \(t = 2\pi \) by the force \(\vec{F} = (-yz, xz, z) \).

a. \(\frac{33}{2}\pi \)
b. 33\(\pi \)
c. \(\frac{33}{2}\pi^2 \)
d. 33\(\pi^2 \)
e. 66\(\pi^2 \) Correct Choice

SOLUTION:

\[\vec{F}(\vec{r}(t)) = \langle -6t\sin 2t, 6t\cos 2t, 3t \rangle \]

\[|\vec{v}| = \langle -4\sin 2t, 4\cos 2t, 3 \rangle \]

\[\vec{F} \cdot ds = \int_0^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{v} \, dt = \int_0^{2\pi} (24t\sin^2 2t + 24t\cos^2 2t + 9t) \, dt = \int_0^{2\pi} 33t \, dt = \left[\frac{33}{2} t^2 \right]_0^{2\pi} = 66\pi^2 \]
9. Find the tangent line to the helix \(\vec{r}(t) = (2 \cos 2t, \ 2 \sin 2t, \ 3t) \) at the point \(t = \frac{\pi}{2} \).

Where does it intersect the xy-plane?

HINT: What are the position and tangent vector at \(t = \frac{\pi}{2} \)?

a. \((x,y) = (-2,-2\pi)\)

b. \((x,y) = (-2,2\pi)\) Correct Choice

c. \((x,y) = (-1,-\pi)\)

d. \((x,y) = (-1,\pi)\)

e. \((x,y) = (2,\pi)\)

SOLUTION: \(P = \vec{r}\left(\frac{\pi}{2}\right) = (2 \cos \frac{\pi}{2}, \ 2 \sin \frac{\pi}{2}, \ \frac{3\pi}{2}) = (-2, 0, \frac{3\pi}{2}) \)

\(\vec{v}(t) = (-4 \sin 2t, \ 4 \cos 2t, \ 3) \) \(\vec{v}\left(\frac{\pi}{2}\right) = (-4 \sin \pi, \ 4 \cos \pi, \ 3) = (0, -4, 3) \)

Tangent Line: \(X = P + t\vec{v} \) \((x,y,z) = (-2, -4t, \frac{3\pi}{2} + 3t) \)

The line intersects the xy-plane when \(z = \frac{3\pi}{2} + 3t = 0 \) or \(t = -\frac{\pi}{2} \). So \((x,y) = (-2,2\pi)\)

10. Find the plane tangent to the graph of \(z = y \ln x \) at the point \((e,2)\). Its \(z \)-intercept is

a. \(e \)

b. \(2 \)

c. \(0 \)

d. \(-2\) Correct Choice

e. \(-e\)

SOLUTION:

\(f = y \ln x \) \(f(e,2) = 2 \) \(z = f(e,2) + f_x(e,2)(x-e) + f_y(e,2)(y-2) \)

\(f_x = \frac{y}{x} \) \(f_x(e,2) = \frac{2}{e} \) \(= 2 + \frac{2}{e}(x-e) + 1(y-2) \)

\(f_y = \ln x \) \(f_y(e,2) = 1 \) When \(x = y = 0 \), we have \(z = 2 - 2 - 2 = -2 \).
11. Find the plane tangent to the graph of \(x^2z^2 + 2zy^2 + yx^3 = 71 \) at the point \((2,1,0)\). Its \(z \)-intercept is

a. 32
b. 16 Correct Choice
c. 8
d. 4
e. 2

SOLUTION:
\[F(x,y,z) = x^2z^2 + 2zy^2 + yx^3 \]
\[\vec{V}F = \langle 2xz^2 + 3yx^2, 4zy + x^3, 2x^2z + 2y^2 \rangle \]
\[\vec{N} = \frac{\vec{V}F}{|\vec{V}F|} \bigg|_{(2,1,0)} = \langle 12, 8, 2 \rangle \]
\[\vec{N} \cdot X = \vec{N} \cdot P \]
\[12x + 8y + 2z = 12 \cdot 2 + 8 \cdot 1 + 2 \cdot 0 = 32 \]

When \(x = y = 0 \), we have \(z = 16 \).

12. The point \((x,y) = \left(1, \frac{1}{2}\right) \) is a critical point of the function \(f(x,y) = 4xy - x^3y - 4xy^3 \). Use the Second Derivative Test to classify this critical point.

a. local maximum Correct Choice
b. local minimum
c. saddle point
d. TEST FAILS

SOLUTION:
\[f_x = 4y - 3x^2y - 4y^3 \quad \Rightarrow \quad f_x \left(1, \frac{1}{2}\right) = 4 \left(\frac{1}{2} \right) - 3 \left(\frac{1}{2} \right)^2 - 4 \left(\frac{1}{2} \right)^3 = 0 \]
Checked
\[f_y = 4x - x^3 - 12xy^2 \quad \Rightarrow \quad f_y \left(1, \frac{1}{2}\right) = 4 - \left(\frac{1}{2} \right)^3 = 0 \]
Checked
\[f_{xx} = -6xy \quad \Rightarrow \quad f_{xx} \left(1, \frac{1}{2}\right) = -3 \]
\[f_{xy} = -24xy \quad \Rightarrow \quad f_{xy} \left(1, \frac{1}{2}\right) = -12 \]
\[f_{yy} = 4 - 3x^2 - 12y^2 \quad \Rightarrow \quad f_{yy} \left(1, \frac{1}{2}\right) = 4 - 3 \left(\frac{1}{2} \right)^2 = -2 \]
\[D = f_{xx}f_{yy} - f_{xy}^2 = (-3) \cdot (-12) - (-2)^2 = 32 \]
Since \(D > 0 \) and \(f_{xx} < 0 \) it is a local maximum.

Work Out: (10 points each. Part credit possible. Show all work.)

13. Find the line where the planes \(-2x - 6y + 4z = 7\) and \(3x + 9y - 6z = 5\) intersect, or explain why they are parallel.

SOLUTION:
The normal to the first plane is \(\vec{N}_1 = (-2,-6,4) \).
The normal to the second plane is \(\vec{N}_2 = (3,9,-6) \).
Notice that \(\vec{N}_2 = -\frac{3}{2} \vec{N}_1 \), so the normals are parallel.
Alternatively, compute \(\vec{N}_2 \times \vec{N}_1 = 0 \), so the normals are parallel.
In either case the planes are parallel and do not intersect.
14. Find the point where the line \((x, y, z) = (4 + 3t, 3 - 2t, 2 + t)\) intersects the plane \(x + 2y + 3z = 20\), or explain why they are parallel.

SOLUTION:
Substitute the line into the plane and solve for \(t\):
\[20 = x + 2y + 3z = (4 + 3t) + 2(3 - 2t) + 3(2 + t) = 2t + 16 = 20 \implies t = 2\]
Substitute back into the line:
\[(x, y, z) = (4 + 3(2), 3 - 2(2), 2 + (2)) = (10, -1, 4)\]
Check by substituting into the plane:
\[x + 2y + 3z = (10) + 2(-1) + 3(4) = 20\]

15. A rectangular box sits on the \(xy\)-plane with its top 4 vertices in the paraboloid \(z = 8 - 2x^2 - 8y^2\). Find the dimensions and volume of the largest such box.

SOLUTION: Let the corner in the first quadrant be \((x, y, z)\). The dimensions are \(L = 2x\), \(W = 2y\), \(H = z\). So \(x, y\) and \(z\) are positive. So the volume is
\[V = (2x)(2y)z = 4xyz = 4xy(8 - 2x^2 - 8y^2) = 32xy - 8x^3y - 32xy^3\]
\[V_x = 32y - 24x^2y - 32y^3 = 8y(4 - 3x^2 - 4y^2) = 0 \implies \text{Since } y \neq 0, \ 3x^2 + 4y^2 = 4 \quad (1)\]
\[V_y = 32x - 8x^3 - 96xy^2 = 8x(4 - x^2 - 12y^2) = 0 \implies \text{Since } x \neq 0, \ x^2 + 12y^2 = 4 \quad (2)\]
\[3 \times (1) - (2) : \ 8x^2 = 8 \implies x = 1\]
\[3 \times (2) - (1) : \ 32y^2 = 8 \implies y = \frac{1}{2} \implies z = 8 - 2x^2 - 8y^2 = 8 - 2 - 2 = 4\]
\[L = 2x = 2, \ W = 2y = 1, \ H = z = 4 \implies V = 2 \cdot 1 \cdot 4 = 8\]
\(V\) is positive on the region \(2x^2 + 8y^2 < 8\) with \(x > 0\) and \(y > 0\) and \(V = 0\) on the boundary.

Since there is only one critical point, it must be a maximum.
Note: Problem 12 shows \(V\) is a local maximum.

16. If two adjustable resistors, with resistances \(R_1\) and \(R_2\), are arranged in parallel, the total resistance \(R\) is given by
\[R = \frac{R_1 R_2}{R_1 + R_2}\]
Currently, \(R_1 = 3\Omega\) and \(R_2 = 7\Omega\) and they are changing according to \(\frac{dR_1}{dt} = -0.1\) \(\frac{\Omega}{\text{sec}}\) and \(\frac{dR_2}{dt} = 0.2\ \frac{\Omega}{\text{sec}}\). Find \(R\) and \(\frac{dR}{dt}\). Is \(R\) increasing or decreasing?

SOLUTION:
\[R = \frac{3 \cdot 7}{3 + 7} = 2.1\Omega\]
\[\frac{dR}{dt} = \frac{\partial R}{\partial R_1} \frac{dR_1}{dt} + \frac{\partial R}{\partial R_2} \frac{dR_2}{dt} = \frac{(R_1 + R_2)R_2 - R_1 R_2 (1)}{(R_1 + R_2)^2} \frac{dR_1}{dt} + \frac{(R_1 + R_2)R_1 - R_1 R_2 (1)}{(R_1 + R_2)^2} \frac{dR_2}{dt}\]
\[= \frac{(R_2)^2}{(R_1 + R_2)^2} \frac{dR_1}{dt} + \frac{(R_1)^2}{(R_1 + R_2)^2} \frac{dR_2}{dt} = \frac{7^2}{(3 + 7)^2} (-0.1) + \frac{3^2}{(3 + 7)^2} (0.2) = -0.9 + 1.8\]
\[= 0.9\ \frac{\Omega}{\text{sec}}\]
So \(R\) is decreasing.