Name	ID		1-13	/52
MATH 251	Final Exam	Spring 2013	14	/15
Sections 506		P. Yasskin	15	/15
Multiple Choice: (4 points each. No part credit.)			16	/20
			Total	/102

- **1**. How much work is done to push a box up an incline from (2,1) to (4,2) by the force $\vec{F} = (3,2)$?
 - **a**. 65
 - **b**. $\sqrt{65}$
 - **c**. $2\sqrt{65}$
 - **d**. 64
 - **e**. 8
- **2**. The graph of $2x^2 + 4x + 3y 3z^2 6z = 4$ is a
 - a. hyperboloid of 1-sheet
 - b. hyperboloid of 2-sheets
 - c. elliptic paraboloid
 - d. hyperbolic paraboloid
 - e. cone

3. Find the tangential acceleration, a_T , or the curve $\vec{r}(t) = \left(t^2, \frac{4}{3}t^3, t^4\right)$. HINT: Perfect square.

- **a**. $2 12t^2$
- **b**. $2 + 12t^2$
- **c**. $2t 4t^3$
- **d**. $2t + 4t^3$
- **e**. $2 + 16t^2$

- **4**. Find the equation of the plane through the points (1,2,3), (2,4,2) and (-1,2,4). Its *z*-intercept is
 - **a**. 1
 - **b**. 2
 - **c**. 4
 - **d**. 8
 - **e**. 16

- **5**. Find the plane tangent to the graph of the function $z = 2x^2y$ at the point (x,y) = (3,2). Its *z*-intercept is
 - **a**. -72
 - **b**. -36
 - **c**. 0
 - **d**. 36
 - **e**. 72

- **6**. Find the plane tangent to the level set of the function $F(x, y, z) = 2x^2yz^3$ at the point (x, y, z) = (3, 2, 1). Its *z*-intercept is
 - **a**. 1
 - **b**. 2
 - **c**. 3
 - **d**. 108
 - **e**. 216

7. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.

If the radius r is currently 3 cm and decreasing at 2 cm/sec while the height h is currently 4 cm and increasing at 1 cm/sec, is the volume increasing or decreasing and at what rate?

- **a**. increasing at 19π cm³/sec
- **b.** increasing at 13π cm³/sec
- c. neither increasing nor decreasing
- **d**. decreasing at 13π cm³/sec
- **e**. decreasing at 19π cm³/sec
- 8. Duke Skywater is traveling in the Millenium Eagle through a dangerous galactic politon field whose density is $\rho = 2x^2yz^3$. If Duke's current position and velocity are $\vec{r} = (3, 2, 1)$ and $\vec{v} = (.25, .5, -.25)$, what is the current time rate of change of the politon field as seen by Duke?
 - **a**. -12
 - **b**. -120
 - **c**. 12
 - **d**. 120
 - **e**. 12,564
- **9**. Duke Skywater is traveling in the Millenium Eagle through a dangerous galactic politon field whose density is $\rho = 2x^2yz^3$. If Duke's current position is $\vec{r} = (3, 2, 1)$, in what unit vector direction should he travel to **reduce** the politon field as fast as possible?

a.
$$\frac{1}{\sqrt{349}}$$
 (4, 3, 18)
b. $\frac{1}{\sqrt{349}}$ (4, -3, 18)
c. $\frac{1}{\sqrt{349}}$ (-4, -3, -18)
d. $\frac{1}{\sqrt{349}}$ (-4, 3, -18)

10. Compute $\int \vec{F} \cdot d\vec{s}$ where $\vec{F} = (2x + 2y, 2x + 2y)$ along the curve $\vec{r}(t) = (4\sqrt{2}t\cos(t), 4\sqrt{2}t\sin(t))$ 2 for $-\frac{\pi}{4} \leq t \leq \frac{\pi}{4}$. 1 HINT: Find a scalar potential. **a**. 2π +-3 -2 -1 **b**. 4π **C**. 8π **d**. $4\pi^2$ **e**. $8\pi^2$

- 11. Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (x y, x + y)$ counterclockwise around the one leaf of the 3 leaf rose $r = \cos(3\theta)$ with $x \ge 0$. HINT: Use Green's Theorem.
 - $\frac{\pi}{2}$ a.
 - **b**. $\frac{\pi}{3}$
 - c. $\frac{\pi}{4}$

 - **d**. $\frac{\pi}{6}$
 - **e**. $\frac{\pi}{12}$

- **12**. Compute $\iint \vec{F} \cdot d\vec{S}$ for $\vec{F} = (xy^2, yx^2, z(x^2 + y^2))$ over the complete surface of the solid above the paraboloid $z = x^2 + y^2$ below the plane z = 4, oriented outward.
 - **a**. $\frac{64}{5}\pi$
 - **b**. $\frac{64}{3}\pi$
 - **c**. $\frac{64}{15}\pi$
 - **d**. $\frac{256}{15}\pi$
 - **e**. $\frac{256}{3}\pi$

13. Compute $\iint (x^3 + xy^2) dx dy$ over the quarter circle $x^2 + y^2 \le 4$ in the first quadrant.

b.
$$\frac{8}{5}\pi$$

c. $\frac{16}{5}\pi$

- **d**. $\frac{64}{5}\pi$
- **e**. $\frac{32}{5}$

14. (15 points) The half cylinder $x^2 + y^2 = 9$ for $y \ge 0$ and $0 \le z \le 4$ has mass surface density $\rho = y^2$. Find the total mass and the center of mass. Follow these steps: Parametrize the surface:

 $\vec{R}($,) = (, ,)

Find the tangent vectors, the normal vector and its length:

 $\vec{e}_{\theta} =$

 $\vec{e}_z =$

 $\vec{N} =$

 $\left| \vec{N} \right| =$

Evaluate the density on the surface and compute the total mass:

 $\rho = y^2 \qquad \rho|_{\vec{R}} = M =$

Use symmetry to determine the x and z components fo the center of mass and then compute the y component of the center of mass.

 $\bar{x} = \bar{z} =$

 $M_{xz} =$

15. (15 points) A rectangular box sits on the *xy*-plane with its top 4 vertices on the paraboloid $z + 2x^2 + 8y^2 = 8$. Find the dimensions and volume of the largest such box.

NOTE: Full Credit for solving by Lagrange Multipliers, Half Credit for Eliminating a Variable.

16. (20 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{s}$ for the cone *C* given by $z = \sqrt{x^2 + y^2}$ for $z \le 3$ oriented down and out, and the vector field $\vec{F} = (-yz, xz, z^2)$. Note: The boundary of the cone is the circle, $x^2 + y^2 = 9$, Be sure to check the orientations. Use the following steps:

a. The cone, *C*, may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$ Compute the surface integral by successively finding:

$$\vec{e}_r, \vec{e}_\theta, \vec{N}, \vec{\nabla} \times \vec{F}, \vec{\nabla} \times \vec{F} \Big|_{\vec{R}(r,\theta)}, \iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$

b. Parametrize the circle, ∂C , and compute the line integral by successively finding:

$$\vec{r}(\theta), \vec{v}, \vec{F}\Big|_{\vec{r}(\theta)}, \int_{\partial C} \vec{F} \cdot d\vec{s}$$