Name \qquad ID \qquad
MATH 251
Sections 506
Final Exam
Spring 2013
P. Yasskin

Multiple Choice: (4 points each. No part credit.)

$1-13$	$/ 52$
14	$/ 15$
15	$/ 15$
16	$/ 20$
Total	$/ 102$

1. How much work is done to push a box up an incline from $(2,1)$ to $(4,2)$ by the force $\vec{F}=(3,2)$?
a. 65
b. $\sqrt{65}$
c. $2 \sqrt{65}$
d. 64
e. 8
2. The graph of $2 x^{2}+4 x+3 y-3 z^{2}-6 z=4$ is a
a. hyperboloid of 1 -sheet
b. hyperboloid of 2-sheets
c. elliptic paraboloid
d. hyperbolic paraboloid
e. cone
3. Find the tangential acceleration, a_{T}, or the curve $\vec{r}(t)=\left(t^{2}, \frac{4}{3} t^{3}, t^{4}\right)$. HINT: Perfect square.
a. $2-12 t^{2}$
b. $2+12 t^{2}$
c. $2 t-4 t^{3}$
d. $2 t+4 t^{3}$
e. $2+16 t^{2}$
4. Find the equation of the plane through the points $(1,2,3),(2,4,2)$ and $(-1,2,4)$. Its z-intercept is
a. 1
b. 2
c. 4
d. 8
e. 16
5. Find the plane tangent to the graph of the function $z=2 x^{2} y$ at the point $(x, y)=(3,2)$. Its z-intercept is
a. -72
b. -36
c. 0
d. 36
e. 72
6. Find the plane tangent to the level set of the function $F(x, y, z)=2 x^{2} y z^{3}$ at the point $(x, y, z)=(3,2,1)$. Its z-intercept is
a. 1
b. 2
c. 3
d. 108
e. 216
7. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.

If the radius r is currently 3 cm and decreasing at $2 \mathrm{~cm} / \mathrm{sec}$ while the height h is currently 4 cm and increasing at $1 \mathrm{~cm} / \mathrm{sec}$, is the volume increasing or decreasing and at what rate?
a. increasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
b. increasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
c. neither increasing nor decreasing
d. decreasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
e. decreasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
8. Duke Skywater is traveling in the Millenium Eagle through a dangerous galactic politon field whose density is $\rho=2 x^{2} y z^{3}$. If Duke's current position and velocity are $\vec{r}=(3,2,1)$ and $\vec{v}=(.25, .5,-.25)$, what is the current time rate of change of the politon field as seen by Duke?
a. -12
b. -120
c. 12
d. 120
e. 12,564
9. Duke Skywater is traveling in the Millenium Eagle through a dangerous galactic politon field whose density is $\rho=2 x^{2} y z^{3}$. If Duke's current position is $\vec{r}=(3,2,1)$, in what unit vector direction should he travel to reduce the politon field as fast as possible?
a. $\frac{1}{\sqrt{349}}(4,3,18)$
b. $\frac{1}{\sqrt{349}}(4,-3,18)$
c. $\frac{1}{\sqrt{349}}(-4,-3,-18)$
d. $\frac{1}{\sqrt{349}}(-4,3,-18)$
10. Compute $\int \vec{F} \cdot d \vec{s}$ where $\vec{F}=(2 x+2 y, 2 x+2 y)$ along the curve $\vec{r}(t)=(4 \sqrt{2} t \cos (t), 4 \sqrt{2} t \sin (t))$ for $-\frac{\pi}{4} \leq t \leq \frac{\pi}{4}$.
HINT: Find a scalar potential.
a. 2π

b. 4π
C. 8π
d. $4 \pi^{2}$
e. $8 \pi^{2}$
11. Compute $\oint \vec{F} \cdot d \vec{s}$ for $\vec{F}=(x-y, x+y)$ counterclockwise around the one leaf of the 3 leaf rose $r=\cos (3 \theta)$ with $x \geq 0$. HINT: Use Green's Theorem.
a. $\frac{\pi}{2}$
b. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$

d. $\frac{\pi}{6}$
e. $\frac{\pi}{12}$
12. Compute $\iint \vec{F} \cdot d \vec{S}$ for $\vec{F}=\left(x y^{2}, y x^{2}, z\left(x^{2}+y^{2}\right)\right)$ over the complete surface of the solid above the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$, oriented outward.
a. $\frac{64}{5} \pi$
b. $\frac{64}{3} \pi$

c. $\frac{64}{15} \pi$
d. $\frac{256}{15} \pi$
e. $\frac{256}{3} \pi$
13. Compute $\iint\left(x^{3}+x y^{2}\right) d x d y$ over the quarter circle $x^{2}+y^{2} \leq 4$ in the first quadrant.
a. 4
b. $\frac{8}{5} \pi$
c. $\frac{16}{5} \pi$
d. $\frac{64}{5} \pi$
e. $\frac{32}{5}$

Work Out: (Points indicated. Part credit possible. Show all work.)
14. (15 points) The half cylinder $x^{2}+y^{2}=9$ for $y \geq 0$ and $0 \leq z \leq 4$ has mass surface density $\rho=y^{2}$. Find the total mass and the center of mass. Follow these steps:
Parametrize the surface:
$\vec{R}(\quad, \quad)=($ \square
Find the tangent vectors, the normal vector and its length:
$\vec{e}_{\theta}=$
$\vec{e}_{z}=$
$\vec{N}=$
$|\vec{N}|=$

Evaluate the density on the surface and compute the total mass:
$\rho=\left.y^{2} \quad \rho\right|_{\vec{R}}=$
$M=$

Use symmetry to determine the x and z components fo the center of mass and then compute the y component of the center of mass.

$$
\begin{array}{ll}
\bar{x}= & \bar{z}= \\
M_{x z}= &
\end{array}
$$

$$
\bar{y}=
$$

15. (15 points) A rectangular box sits on the $x y$-plane with its top 4 vertices on the paraboloid $z+2 x^{2}+8 y^{2}=8$. Find the dimensions and volume of the largest such box.
NOTE: Full Credit for solving by Lagrange Multipliers, Half Credit for Eliminating a Variable.
16. (20 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}$
for the cone C given by $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 3$
oriented down and out, and the vector field $\vec{F}=\left(-y z, x z, z^{2}\right)$.
Note: The boundary of the cone is the circle, $x^{2}+y^{2}=9$,

Be sure to check the orientations. Use the following steps:
a. The cone, C, may be parametrized as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$

Compute the surface integral by successively finding:

$$
\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times\left.\vec{F}\right|_{\vec{R}(r, \theta)}, \quad \iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}
$$

b. Parametrize the circle, ∂C, and compute the line integral by successively finding:

$$
\vec{r}(\theta), \quad \vec{v},\left.\quad \vec{F}\right|_{\vec{r}(\theta)}, \quad \int_{\partial C} \vec{F} \cdot d \vec{s}
$$

